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Abstract

The Dataflow Design Tool is a software tool for selecting a multiprocessor

scheduling solution for a class of computational problems. The problems of interest

are those that can be described with a dataflow graph and are intended to be executed

repetitively on a set of identical processors. Typical applications include signal pro-

cessing and control law problems. The software tool implements graph-search algo-

rithms and analysis techniques based on the dataflow paradigm. Dataflow analyses

provided by the software are introduced and shown to effectively determine perfor-

mance bounds, scheduling constraints, and resource requirements. The software tool

provides performance optimization through the inclusion of artificial precedence con-

straints among the schedulable tasks. The user interface and tool capabilities are

described. Examples are provided to demonstrate the analysis, scheduling, and opti-

mization functions facilitated by the tool.

1. Introduction

For years, digital signal processing (DSP) systems

have been used to realize digital filters, compute Fourier

transforms, execute data compression algorithms, and

run a vast amount of other computationally intensive

algorithms. Today, both government and industry are

finding that computational requirements, especially in

real-time systems, are becoming increasingly challeng-

ing. As a result, many users are relying on multiprocess-

ing to solve these problems. To take advantage of

multiprocessor architectures, novel methods are needed

to facilitate the mapping of DSP applications onto multi-

ple processors. Consequently, the DSP market has

exploded with new and innovative hardware and soft-
ware architectures that efficiently exploit the parallelism

inherent in many DSP applications. The dataflow para-

digm has also been getting considerable attention in the
areas of DSP and real-time systems. The commercial

products offered today utilize the datafiow paradigm as a
graphical programming language but do not incorporate

dataflow analyses in designing a multiprocessing solu-

tion. Although there are many advantages to graphical

programming, the full potential of the dataflow represen-

tation is lost by not utilizing it analytically as well. In the

absence of the analysis and/or design offered by the soft-
ware tool described in this paper, programmers must rely

on approximate compile time solutions (heuristics) or
run-time implementations, which often utilize ad hoc

design approaches.

This paper describes the Dataflow Design Tool,

which is capable of determining and evaluating the

steady-state behavior of a class of computational prob-

lems for iterative parallel execution on multiple proces-

sors. The computational problems must meet all the

following criteria:

1. An algorithm decomposition into primitive opera-
tions or tasks must be known.

2. The algorithm task dependencies, preferably due to

the inherent data dependencies, must be modeled

by a directed graph.

3. The directed graph must be deterministic as defined
below.

4. The algorithm execution must be repetitive for an

infinite input data stream.

5. The algorithm must be executed on identical

processors.

When the directed graph is a result of inherent data

dependencies within the problem, the directed graph is

equivalent to a dataflow graph. Dataflow graphs are gen-

eralized models of computation capable of exposing

inherent parallelism in algorithms ranging from fine to

large grain. This paper assumes an understanding of both

dataflow graph theory as described by a Petri net

(marked graph) and the fundamental problem of task
scheduling onto multiple processors. The Dataflow

Design Tool is a Microsoft Windows application, and

thus a working knowledge of Microsoft Windows (i.e.,

launching programs, using menus, window scroll bars) is
also assumed.

In the context of this paper, graph nodes represent

schedulable tasks, and graph edges represent the data

dependencies between the tasks. Because the data depen-
dencies imply a precedence relationship, the tasks make

up a partial-order set. That is, some tasks must execute in

a particular order, whereas other tasks may execute inde-

pendently. When a computational problem or algorithm

can be described with a dataflow graph, the inherent par-

allelism present in the algorithm can be readily observed

and exploited. The deterministic modeling methods pre-

sented in this paper are applicable to a class of dataflow

graphs where the time to execute tasks are assumed con-
stant from iteration to iteration when executed on a set of

identical processors. Also, the dataflow graph is assumed



dataindependent;thatis, anydecisionspresentwithin
the computationalproblemarecontainedwithin the
graphnodesratherthandescribedatthegraphlevel.The
dataflowgraphprovidesbotha graphicalmodelanda
mathematicalmodelcapableof determiningrun-time
behaviorandresourcerequirementsatcompiletime.In
particular,data_flowgraphanalysiscandeterminethe
exploitableparallelism,theoreticalperformancebounds,
speedup,and resourcerequirementsof the system.
Becausethegraphedgesimplydatastorage,theresource
requirementspecifiestheminimumamountof memory
neededfordatabuffersaswellastheprocessorrequire-
ments.This informationallowstheuserto matchthe
resourcerequirementswithresourceavailability.Inaddi-
tion,thenonpreemptiveschedulingandsynchronization
of thetasksthataresufficientto obtainthetheoretical
performancearespecifiedby thedataflowgraph.This
propertyallowstheusertodirecttherun-timeexecution
accordingtothedataflowfiringrules(i.e.,whentasksare
enabledforexecution)sothattherun-timeeffortissim-
ply reducedtoallocatinganidleprocessortoanenabled
task(refs.1and2).Whenresourceavailabilityisnotsuf-
ficientto achieveoptimumperformance,atechniqueof
optimizingthedataflowgraphwithartificialdatadepen-
denciescalled"controledges"isutilized.

Anefficientsoftwaretoolthatappliesthemathemat-
icalmodelspresentedisdesirableforsolvingproblemsin
atimelymanner.A softwaretooldevelopedfordesign
and analysisis introduced.The softwareprogram,
referredto hereafterasthe"DataflowDesignTool"or
"DesignTool,"providesautomaticandinteractiveanaly-
siscapabilitiesapplicabletothedesignofamultiprocess-
ing solution.Thedevelopmentof theDesignToolwas
motivatedbyaneedto adaptmultiprocessingcomputa-
tions to emergingvery-high-speedintegratedcircuit
(VHSIC)space-qualifiedhardwarefor aerospaceappli-
cations.InadditiontotheDesignTool,amultiprocessing
operatingsystembasedon a directed-graphapproach
calledthe"ATAMMmulticomputeroperatingsystem"
(AMOS)wasdeveloped.AMOSexecutestherulesofthe
algorithmtoarchitecturemappingmodel(ATAMM)and
hasbeensuccessfullydemonstratedonagenericVHSIC
spacebornecomputer(GVSC)consistingof fourproces-
sorslooselycoupledon a parallel-interface(PI) bus
(refs.1and2).TheDesignToolwasdevelopednotonly
fortheAMOSandGVSCapplicationdevelopmentenvi-
ronmentpresentedin references1 and3 but alsofor
otherpotentialdataflowapplications.Forexample,infor-
mationprovidedbytheDesignToolcouldbeusedfor
schedulingconstraintsto aid heuristicscheduling
algorithms.

A formaldiscussionof dataflowgraphmodelingis
presentedin section2 alongwithdefinitionsof graph-
theoreticperformancemetrics.Sections3through9pro-

videanoverviewof theuserinterfaceandthecapabilities
of theDataflowDesignToolversion3.0.Furtherdiscus-
sionsofthemodelsimplementedbytheDesignToolare
providedin section10for afewcasestudies.Enhance-
mentsplannedforthetoolarediscussedinsectionI 1.

2. Dataflow Graphs

A generalized description of a multiprocessing prob-

lem and how it can be modeled by a directed graph is

presented. Such formalism is useful in defining the mod-

els and graph analysis procedures supported by the

Design Tool. A computational problem can often be
decomposed into a set of tasks to be scheduled for execu-

tion (ref. 4). If the tasks are not independent of one

another, a precedence relationship will be imposed on the

tasks in order to obtain correct computational results.

A task system can be represented formally as a

5-tuple ('T,<(, £., 59, Mo). The set 'T= {Tl, 7"2, T 3..... Tn }
is a nonempty set of n tasks to be executed, and -,( is the

precedence relationship on '/+such that T i ..(1) signifies
that Tj cannot execute until the completion of Ti. The set

L= {L 1, /12, L 3 ..... Ln} is a nonempty, strictly positive

set of run-time latencies such that task Ti takes L i amount

of time to execute. The set 59= {di.<j, dk.<l, dm.<n .....
dx. < y} is a strictly positive set of latencies associated

with each precedence relationship. A latency d i .( j in 59

that is associated with the precedence Ti .,( Tj represents

the time required to communicate the data from Ti to 7).
Finally, Mo is the initial state of the system as indicated
by the presence of initial data.

Such task systems can be described by a directed

graph where nodes (vertices) represent the tasks and

edges (arcs) describe the precedence relationship
between the tasks. When the precedence constraints
given by-< are a result of the dataflow between the

tasks, the directed graph is equivalent to a dataflow graph

(DFG) as shown in figure 1. Special transitions called

Latency -- 390

/_ Nede

Edge/_

190 __@ 9_ Tokln

Figure 1. Dataflow graph example.



sourcesandsinksare also provided to model the input

and output data streams of the task system. The presence
of data is indicated within the DFG by the placement of

tokens. The DFG is initially in the state indicated by the

marking M o. The graph transitions through other mark-

ings as a result of a sequence of node firings. That is,
when a token is available on every input edge of a node
and sufficient resources are available for the execution of

the task represented by the node, the node fires. When

the node associated with task T i fires, it consumes one
token from each of its input edges, delays an amount of

time equal to L i, and then deposits one token on each of

its output edges. Sources and sinks have special firing
rules in that sources are unconditionally enabled for fir-

ing and sinks consume tokens but do not produce any. By
analyzing the DFG in terms of its critical path, critical

circuit, dataflow schedule, and the token bounds within

the graph, the performance characteristics and resource

requirements can be determined a priori. The Design

Tool uses this dataflow representation of a task system

and the graph-theoretic performance metrics presented

herein. The Design Tool relies heavily on the dataflow

graph for its functionality and interface. However, when

the abstraction of representing the task dependencies

(T i ._ 7)) by an edge is used so often, one may adopt the
terminology of saying a "node executes" on a processor

even though a node only represents task instructions that

get executed. Nevertheless, depending on the context of
the discussion, the terms "node" and "task" are used

interchangeably in this paper.

2.1. Measuring and Constraining Parallelism

The two types of concurrency that can be exploited

in dataflow algorithms can be classified as parallel and

pipeline. Two graph-theoretic metrics are measured by

the Design Tool as indicators of the degree of concur-

rency that may be exploited. The metrics are referred to
as TBIO (time between input and output) and TBO (time

between outputs) and reflect the degree of parallel and

pipeline concurrency, respectively.

Parallel concurrency is associated with the execution

of tasks that are independent (no precedence relationship

imposed by-(). The extent to which parallel concur-

rency can be exploited depends on the number of parallel

paths within the DFG and the number of resources avail-

able to exploit the parallelism. The elapsed time between

the production of an input token by the source and the

consumption of the corresponding output token by the
sink is defined as the time between input and output, or

TBIO. TBIO is frequently equivalent to the scheduling

length to, defined as the minimum time to execute all

tasks for a given data set. However, when initial tokens

are present, the scheduling length may be greater than
TBIO. The TBIO metric in relation to the time it would

take to execute all tasks sequentially can be a good mea-

sure of the parallel concurrency inherent within a DFG.

If there are no initial tokens present in the DFG, TBIO

can be determined by using the traditional critical path

analysis, where TBIO is given as the sum of node laten-
cies in L and data communication delays in D (modeled

by edge latency) contained in the critical path. When M o
defines initial tokens in the forward direction, the graph

takes on a different behavior (ref. 5). This occurs in

many signal processing and control algorithms where ini-

tial tokens are expected to provide previous state infor-

mation (history) or to provide delays within the

algorithm. A general equation is used by the Design Tool

to calculate the critical path, and thus TBIO, as a function

of TBO when initial tokens are present along forward

paths:

TBIO : Z Ln_e+ Z Ln°clc-(DcnticalPath)(TBO)(1)

V node • critical path V edge _ critical path

where Lnode are the node latencies, Ledg e are the edge

latencies, and Dcritical path is the total delay along the crit-
ical path (ref. 5). The critical path, defined as the path

without slack, is the path that maximizes equation (1).

Including edge latency as a model parameter provides a

simple, but effective, means of modeling the cost of com-

municating data between nodes. This communication
model assumes that nodes with multiple output edges can

communicate the data for each edge simultaneously.

Of particular interest are the cases when the algo-
rithm modeled by the DFG is executed repetitively for

different data sets (data samples in DSP terminology).

Pipeline concurrency is associated with the repetitive
execution of the algorithm for successive data sets with-

out waiting for the completion of earlier data sets. The

iteration period and thus throughput (inverse of the itera-

tion period) is characterized by the metric TBO (time

between outputs), defined as the time between consecu-

tive consumptions of output tokens by a sink. Because of

the consistency property of deterministic datafiow

graphs, all tasks execute with period TBO (refs. 6 and 7).

This implies that if input data are injected into the graph

with period TBI (time between inputs) then output data
will be generated at the graph sink with period

TBO=TBI. The minimum graph-theoretic iteration

period TO due to recurrence loops is given by the largest

ratio of loop time Lloop to the initial tokens within the

loop Dloop for all recurrence loops within the DFG
(refs. 7-9):

( Z Ln°de+ Z Ledg:

T = max(LlooPl = maxln°dee loop edgee loop

o _D loop / _ Dloop

(2)
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Givena finitenumberof processors,theactuallower
boundontheiterationperiod(orTBOlb) isgivenby

TBOlb = max(To, T-TCRE) (3)

injection rate to the graph. Adding a delay loop around

the source makes the source no longer unconditionally

enabled (ref. 1). It is important to determine the appropri-

ate lower bound on TBO for a given graph and number
of resources.

where TCE is the total computing effort and R is the

available number of processors. If communication effort

modeled by edge delays is ignored, TCE can be calcu-
lated from the latencies in L as

TCE = _ L i (4)
i_.L

and the theoretically optimum value of R c for a given
TBO period, referred to as the calculated R, can be com-

puted as

TCE

where the ceiling function I F ] is applied to the ratio of

TCE to TBO. Since every task executes once within an

iteration period of TBO with R processors and takes TCE

amount of time with one processor, speedup S can be
defined by Amdahl's Law as

2.2. Run-Time Memory Requirements

The scheduling techniques offered in this paper are

intended for modeling the periodic execution of algo-

rithms. In many instances, the algorithms may execute

indefinitely on an unlimited stream of input data; this is

typically true for DSP algorithms. To achieve a high

degree of pipeline concurrency, a task may be required to

begin processing the next data sets before completing the

execution of the current data set, resulting in multiple

instantiations of a task. Multiple instantiations of a task

require that a task execute on different processors simul-

taneously for different, sequential data sets. System
memory requirements increase with the instantiation

requirements of tasks, since multiply instantiated tasks
must be redundantly allocated on multiple processors.

For deterministic algorithms executing at constant itera-

tion periods, the bound on the number of task instantia-
tions can be calculated as

TCE
S - TBO (6)

and processor utilization U ranging from 0 to 1 can be
defined as

S
U = - (7)

R

for a processor requirement R.

By definition, the critical path does not contain

slack; thus, critical path tokens will not wait on edges for

noncritical path tokens, ideally. The inherent nature of

dataflow graphs is to accept data tokens as quickly as the

graph and available resources (processors and memory)

will allow. When this occurs, the graph becomes con-

gested with tokens waiting on the edges for processing
because of the finite resources available, without result-

ing in throughput above the graph-imposed upper bound
(refs. 10 and 11). However, when tokens wait on the crit-

ical path for execution because of token congestion
within the graph, an increase in TBIO above the lower
bound occurs. This increase in TBIO can be undesirable

for many real-time applications. Therefore, to prevent

saturation, constraining the parallelism that can be

exploited becomes necessary. The parallelism in data-

flow graphs can be constrained by limiting the input

1The ceiling of a real number x, denoted as [-xT, is equal to the
smallest integer greater than or equal to x.

V Li 1 (8)Instantiations of T i =

Even though the multiprocessor schedules deter-

mined by the Design Tool are periodic, it is important to

determine whether the memory requirement for the data

is bounded. However, just knowing that the memory

requirement is bounded may not be enough. One may

also wish to calculate the maximum memory require-

ments a priori. By knowing the upper bound on memory,

the memory can be allocated statically at compile time to

avoid the run-time overhead of dynamic memory man-

agement. Dataflow graph edges model a FIFO manage-
ment of tokens migrating through a graph and thus imply

physical storage of the data shared among tasks. Using

graph-theoretic rules, the Design Tool is capable of

determining the bound on memory required for the
shared data as a function of the dataflow schedule.

2.3. Control Edges

When resource requirements for a given dataflow

graph schedule are greater than resource availability,
imposing additional precedence constraints or artificial

data dependencies onto '/" (thereby changing the sched-

ule) is a viable way to improve performance (refs. 1, 5,

and 12). These artificial data dependencies are referred to

as "control edges." The Design Tool allows the user to

alter the dataflow schedule by choosing that a given task
be delayed until the execution of another task. The

4
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Figure 2. Dataflow Design

Design Tool automatically models this additional prece-

dence constraint as a control edge and initializes the edge

with tokens (positive or negative), as needed, to provide

proper synchronization. That is, as a function of the new

schedule, the precedence constraint may impose intra-

iteration dependencies for the same data set, which do

not require an initial token. On the other hand, the prece-

dence relationship may impose inter-iteration depen-

dency for different data sets, which requires initial tokens
to occur.

3. Dataflow Design Tool

The dataflow paradigm presented in the previous

section is useful for exposing inherent parallelism con-

strained only by the data precedences. Such a hardware-

independent analysis can indicate whether a given

algorithm decomposition has too little or too much paral-

lelism early on in the development stage before the user

attempts to map the algorithm onto hardware. The Data-
flow Design Tool version 3.0, described in the remaining

sections, analyzes dataflow graphs and applies the design

principles discussed herein to multiprocessor applica-
tions. The software was written in C++ 2 and executes in

Microsoft Windows 3 or Windows NT. The software can

2Version 3.1 by Borland International, Inc.
3Version 3.1 by Microsoft Corporation.

Graphical displays:
Gantt chart task execution

Single iteration (SGP)

Periodic execution (TGP)

Resource envelopes

Tool information flow.

be hosted on an i386/486 personal computer or a compat-

ible type. The various displays and features are presented
in this section. As a convention, menu commands are

denoted with the _" symbol.

Figure 2 provides an overview of the input and out-

put process flow of the Design Tool. After a DFG is

loaded, the Design Tool will search the DFG for recur-

rence loops (circuits) and determine the minimum itera-

tion period TO by using equation (2), where TO is zero if
no circuits are present. TBO will initially be set to the

largest task latency or T O, whichever is larger. The calcu-
lated processor requirement R c is initially given by equa-

tion (5). TBIO is determined from equation (1). Any

changes to R will result in an update of the optimum

value for TBO (TBOlb) from equation (3). For a given

value of R, TBO may be changed to a value greater than

or equal to TBOlb. When the schedule is altered (result-

ing in added control edges), the analysis is repeated to
determine the new critical path, critical circuits, and

modifications to the performance bounds.

The dataflow graph example shown in figure 1 is

used to present the displays and capabilities of the tool.

The format for the graph description file is described in

section 3.1.1, and the complete graph text description

used for figure 1 is provided in the appendix. The node

latencies shown in figure 1 are interpreted generally as

time units so that "real time" can be user interpreted.



Thatis,if theclockusedto measure or derive the task

durations has a resolution of 100 btsec, the latency of

node A can be interpreted to be 9 _tsec. To maintain the

resolution of time when applying the equations of sec-

tion 2, the Design Tool always rounds (applies the ceil-
ing function) to the next highest clock tick.

3.1. File Input/Output

The Design Tool takes input from a graph text file
that specifies the topology and attributes of the DFG. The

graph text file format is given in this section. Updates to

the graph text file (e.g., GRAPHFILE.GTF) with design
attributes and artificial dependencies are made directly

by the Design Tool, with the original version saved as a

backup (graphfile.bak). In addition to this graph text file,

the Design Tool can accept input from the ATAMM
graph-entry tool 4 developed for the AMOS system at the

Langley Research Center. Updates to the graph file are

made via dynamic data exchange (DDE) messages to the

graph-entry tool for a given design point (R, TBO, and

TBIO). Changes to the graph topology due to added con-

trol edges appear in real time. The graph-entry tool is

responsible for writing the graph updates to the graph
file.

The Design Tool also makes use of other files. An

.RTF file is created automatically for each graph file

(GRAPHFILE.RT'I') and contains performance informa-

tion needed for follow-up design sessions of previously

updated graphs. Two .TMP files are also created for pro-

cessing paths (PATHS.TMP) and circuits (CIRCS.TMP)

within the graph. An .INI file (DESIGN.INI) stores
(1) the graph file used in the last session; (2) the default

graph file extension to search for when opening a file;

(3) the location of the ATAMM graph-entry tool, if used;
and (4) the editor to be used to display the notes file (dis-

cussed in section 3.1.2). An example of the .INI file is

shown in figure 3.

[DesignTool]

3.1.1. Graph Text File

The Design Tool allows the user to describe a data-

flow graph with a text file. The file may only describe a

single graph. Updates to the file (node instantiations,

queue sizes, input injection rate, and added control

edges) for a given analysis or design are done automati-

cally by the tool by using the update Graph menu com-

mand within the Operating Point window (defined in

section 9). The format of the file is given below. Key-

words are not case sensitive, items shown in brackets [ ]

are optional, name specifies a character string with a

maximum of 20 characters and no spaces, and integer

specifies a number from 0 to 32767. Optional parameters
that are omitted have a default value of zero. Blank lines

separating statements are allowed. See appendix for
examples.

The first line in the file must be

GRAPH name specifies the name of the
graph

Following the GRAPH statement (in any order) are

To specify a node transition:

NODE name specifies a node with a
unique name

[ PRIORITY integer ] task priority for information
only

[READ i nt eger] time to read input data

PROCESS integer time to process data

[WRITE integer ] time to write output data or
set up for communication

INST integer task instantiations

END NODE end of node object

Note that the statements between NODE and END NODE

may be in any order.

To specify a source transition:

Extension = *.GTF

Model = 0

Graph = D:\WIN 16L_TAMIVlkDEMO_DFG.GRF

GraphTool = D:\WlN16L_TAMM\GRAPH_GRAPHGEN.EXE

Editor = C:\WINNTkNOTEPAD.EXE

SOURCE name specifies a source with a
unique name

TBI integer time between inputs, i.e., the
input injection period

END SOURCE end of source object

To specify a sink transition:

Figure 3. Example of DESIGN.INI file. SINK name specifies a sink with a unique
name

4Written by Asa M. Andrews, CTA, Inc.

END SINK end of sink object

To specify an edge (edges must be specified following
the NODE, SOURCE, and SI-NK statements):
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Figure 4. Design Tool main window.

EDGE type

INITIAL name

TERMINAL name

TOKENS integer

QUEUE integer

[DELAY integer]

type can be DATA or
CONTROL

name of node producing
tokens to edge

name of node consuming
tokens from edge

number of initial tokens

minimum FIFO queue size
of edge

edge delay used to model
communication time

END EDGE end of edge object

Note that the INITIAL and TERMINAL statements must

precede the remaining EDGE statements.

3.1.2. Notes File

A notes file is a file designated by the user via the

save Notes command for the saving of performance

results or personal notes during the design session. After

creation, the file can be viewed at any time via the Notes

menu command. The following windows can save infor-
mation to this file:

Graph window

Performance window

Parallel Execution window

Time Multiplex window

3.2. Main Program Overview

Upon invoking the Design Tool (DESIGN.EXE), the
main window will appear at the top of the screen with a

caption and menus as shown in figure 4. The menu corn-

mands provided by the main window are defined in this
section.

3.2.1. File Menu

The File menu includes commands that enable the

user to open a graph file, create and view a notes file for

the current session, or exit the program. A description of

each command is given as follows:

,r Open--Invokes the dialogue box shown in figure 5

to allow the user to select a graph file to open as

input.

_" Close--Ends the current session for a particular

graph file without exiting the program.

f View File---Invokes the editor (e.g., NOTE-
PAD.EXE) specified in the DESIGN.INI file for

displaying the current graph file.

t- Get Info----Shows information on the current graph
file.

Save Info---Invokes a dialogue box to allow the

user to specify a notes file in which to save infor-
mation regarding the current design session.

t-Notes---Invokes the editor (e.g., NOTEPAD.EXE)

specified in the DESIGN.INI file for viewing and

updating the notes file with personal notes.

,_Exit--Exits the program. Upon exiting the pro-

gram, the dialogue box shown in figure 6 will be

displayed. Clicking the OK button will exit the pro-

gram whereas clicking Cancel will return to previ-

ous state. By checking the Save Setup box, the

program will remember the current graph file and

automatically load it upon reexecution of the

program.
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Figure 5. Dialogue box for opening graph file.

This will end the session.

[] Save Setup

Figure 6. Dialogue box for exiting Design Tool program.

Shared Memory I No Contention

0 Network with Com Controller

0 Network without Corn Controller

Figure 7. Dialogue box for selection of architecture model.

3.2.2. Setup Menu

The Setup menu includes commands that enable the

user to select the architecture model and the type of mul-

tiple graph execution strategy. A description of each
command is given as follows.

_r Architecture Model--Invokes the dialogue box

shown in figure 7 to allow the user to select a gen-
eral model of the target architecture.

The architectural models are defined as

Shared Memory/No Contention--This architecture

model assumes the processors are completely

connected to shared memory with enough paths to

avoid contention. In effect, this model provides an
architecture-independent model that exposes the par-

allelism inherent within the algorithm, constrained

only by the algorithm decomposition.

Network with Corn ControllermThis architecture

model assumes the processors are completely con-

nected via communication paths. Unlike the Network

without Corn Controller option, each processing unit
is paired with a communication (com) controller that

handles the transfer of information after the processor

sets up for the transfer. Thus, the processors will not
be burdened with the communication transfers to

neighboring processors.

Network without Corn Controller--This architec-

ture model assumes the processors are completely

connected via communication paths. Unlike the

Network with Corn Controller option, this model

does not assume that each processing unit is paired

with a communication (com) controller that handles

the transfer of information after the processor sets up

for the transfer. Thus, each processor will be burdened

with the communication transfers to neighboring

processors.

=r Multiple Graph Strategy--Invokes the dialogue
box shown in figure 8 to allow the user to choose

multiple graph execution strategy. The user simply
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Graph_l

-Time Multiplex Execution--

Graph_2

Graph_3

Figure 8. Dialogue box for selection of multiple graph strategy.

clicks on a graph and chooses to move it to the left
for Parallel Execution or to the right for Time Mul-

tiplex Execution. The strategies are defined as
follows.

Parallel Graph Execution--Multiple graph execu-

tion strategy where graphs are independent; that is,

there is no control over the graph phasing. This type

of strategy requires more processors than if the phas-

ing between graphs is controlled. Because the peak

processor requirements within the system may overlap

at a given time, a worst-case processor requirement

must be utilized in the design.

Time Multiplex Execution--Multiple graph execu-

tion strategy where graphs are dependent on each

other, in that the phasing between graphs is controlled.

This type of strategy can require fewer processors

than if the phasing between graphs is not controlled.

The intent is to phase the graphs in a way that idle

time is filled in as processors migrate from graph to

graph, but the peak processor requirement is limited to

system availability.

3.2.3. Window Menu

The Window menu includes commands that enable

the user to view the overall performance of the system

based on a particular strategy, view a particular graph
window, or draw in color or black and white. A descrip-

tion of each command is given as follows.

_'show Parallel Execution--Invokes the Parallel

Graph window displaying parallel graph execution

analysis.

_show Time Multiplex Execution--Invokes the

Time Multiplex Graph window displaying the time

multiplex graph execution analysis.

Mr show Operating Points--Invokes the Operating

Point window displaying a plot of TBO versus

TBIO with the required processors.

ir Draw in Color/BW--Toggles between color or

black and white displays.

3.2.4. Help Menu

The Help menu allows the user to invoke the Win-

dows Help program for on-screen help and information
about the Dataflow Design Tool. A description of each
command follows.

f Help--Invokes the help window as shown in fig-

ure 9. (Pressing F1 also invokes the help window.)

About Design Tool--Displays information about

the tool as shown in figure 10.

4. Metrics Window

The Metrics window displays the numerical perfor-

mance characteristics of a graph and allows the user to

invoke the graphical performance displays. The graph
name is shown in the window title. A Metrics window as

shown in figure 11 is created for each graph in the graph
file. Performance metrics include

TCE total computing effort; equal to the
sum of all task latencies

9
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Figure 11. Metrics window.

The number of Processors shown in the Metrics

window will not necessarily equal the number of proces-

sors required for a cyclic dataflow schedule. The number

of Processors shown here is the optimum number of
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Figure 12. TCE dialogue box for each architecture model.

processors for the current TBO setting from equation (5)
and is referred to as the calculated processor require-

ment. The actual processor requirement may be greater
than the calculated requirement because of the partial

ordering of tasks. The job of scheduling partially ordered

tasks to processors is known to be NP-complete (ref. 4).
This implies that an exhaustive search (rescheduling

tasks with start times greater than the earliest start times

given by the dataflow analysis) is required to find an

optimum solution that achieves the timing criteria (e.g.,

minimum TBO and/or schedule length) with only the cal-

culated processor requirement. However, one cannot

guarantee that a solution even exists when both TBO and

R are held constant (ref. 9). In such cases, one must

choose a heuristic that relaxes the criteria, fixing one

parameter (e.g., processors) and allowing the other (e.g.,

TBO) to vary until a solution is found.

The graphical windows provided by the Design Tool

are briefly described below. A more detailed description

of each is provided in later sections. The windows can be

invoked from the Metrics window by clicking on the but-
tons defined below.

_" Single Graph Play (SGP)--A Gantt chart display-

ing the steady-state task schedule for a single com-

putation. The chart is constructed by allowing tasks

to start at the earliest possible time (referred to as
the earliest start (ES) time) with infinite resources

assumed. The chart is plotted with tasks names

shown vertically, task execution duration given by
bars, and a horizontal time axis equal to the sched-

ule length.

t- Total Graph Play (TGP)mA Gantt chart display-

ing the steady-state task schedule for multiple com-

putations executed simultaneously over one
scheduling period (which repeats indefinitely). The

chart is constructed by allowing tasks to start at an

earliest time equal to the ES times (given by the
SGP) modulo TBO with infinite resources

assumed. The chart is plotted similar to the SGP

except only over a TBO time interval. Multiple
instantiations of a task are shown by creating multi-

ple rows per task; this allows the bars to overlap.

ir Single Resource Envelope (SRE)--A plot of the

processor requirement for the SGP.

ar Total Resource Envelope (TRE)lA plot of the

processor requirement for the TGP.

arPerformance---Piots speedup versus processors

given by equation (6).

The following buttons, when clicked on, provide

numerical data on DFG attributes, computing effort, and

allow the user to select a sink (for graphs with multiple
sinks) to measure TBIO.

.am-Graph SummarymDisplays a window summariz-

ing the DFG attributes: node names, latencies, ear-

liest start, latest finish, instantiations, and FIFO

queue sizes.

NrTCE_Invokes the dialogue box shown in fig-

ure 12, which shows a breakdown of computing

effort. The TCE dialogue box is discussed in more
detail in section 4.2.

ir TBIO//,_Invokes the dialogue box shown in fig-
ure 13 to select the desired sink in which to mea-

sure TBIO.

_'TBIO/Schedule Length_Toggles between dis-

playing TBIOIb or the schedule length, co.

ar TBO---Allows the user to increment (+) or decre-

ment (-) TBO or set it (=) to a desired value.

11
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Figure 13. Dialogue box to select desired sink for TBIO
calculations.

Figure 14. Dialogue box to set TBO value.

INPUT...

-Processors

Figure 15. Dialogue box to set processor limit.

Clicking on the = button invokes the dialogue box

shown in figure 14. The minimum TBO value per-

missible is determined from equation (3) for the

current calculated processor setting.

Processors---Allows the user to increment (+) or

decrement (-) the calculated processor limit. Each

time the calculated processors count is changed,

TBO is set to the optimum value determined from

equation (3).

4.1. Metrics Window Menus

The previous section presented the buttons used to

invoke displays and set parameters. The Metrics window

also provides two menus, Display and Set, as shown in

figure 11, that can be used instead of the buttons. The
commands for the Display and Set menus are described
as follows.

4.1.1. Display Menu

The Display menu includes commands that enable

the user to view and arrange the previously described

window displays. The first six commands

ir Graph

ar TCE

ir Schedule length / TBIO

ir Graph Play

_r Concurrency

_r Performance

are equivalent to the button definitions given previously.

The following three commands allow the user to refresh

and arrange the displays currently on the screen.

G-Tile---Tiles the currently active windows invoked

by the Metrics window.

_-Cascade---Cascades the currently active windows

invoked by the Metrics window.

*tResetwRefreshes the currently active windows

invoked by the Metrics window.

4.1.2. Set Menu

The Set menu includes commands that enable the

user to define the calculated processor value, set TBO,

and change the graph name.

_" Processors---Invokes the dialogue box in figure 15

to set the calculated processor limit.

_" TBO--Invokes the dialogue box in figure 14 to set

the desired TBO period.

Sink --Invokes the dialogue box in figure 13 to set
the desired sink for TBIO calculations.

_" Graph Name---Invokes the dialogue box in fig-
ure 16 to allow the user to rename the graph for dis-

play purposes.

4.2. Total Computing Effort

The total computing effort (TCE) value given by the

Metrics window depends on the chosen architecture

model defined in section 3. Figure 12 shows the dialogue

12



INPUT...

- Graph Name

DFG
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box displayed for each of the three architecture models.

The difference between the Shared Memory model and
the Network with Corn Controller model is in the inter-

pretation of graph attribute write time. For the network
models, write time is assumed to represent setup time for
the transfer of information and is denoted as such. The

Network without Com Controller model displays the time

spent communicating (defined by edge delays) because

the processor will be burdened with the effort. Since the

graph described by DFG.GTF does not define edge

delays, the communication effort is shown to be zero.

5. Graph Play

The Graph Play windows provide Gantt charts

describing the dataflow-derived task schedules of the
algorithm graph. The single graph play (SGP) shows the

steady-state time schedule of the graph for a single com-

putation, referred to as "data packet" or "data set." The
tasks are shown scheduled at the earliest start times

determined by the datafiow graph analysis. If tasks are

scheduled this way and infinite resources are assumed,

all the inherent parallelism present within the algorithm

decomposition is exposed and limited only by the data

precedences. The SGP shows the task schedule over a
time axis equal to the schedule length e0. Task executions

are represented by bars with lengths proportional to the
task latencies. The SGP determines the minimum num-

ber of processors sufficient to execute the algorithm for

the schedule length shown.

For digital signal processing and control law algo-

rithms, the algorithm represented by the DFG is assumed

to execute repetitively on an infinite input stream. In
such instances, the user does not have to wait until the

algorithm finishes the computations for a given data

packet before starting on the next. Thus, it is of interest

to determine a cyclic schedule that permits the simulta-
neous execution of multiple data packets which exploits

pipeline concurrency while assuring data integrity. For

this purpose, the total graph play (TGP) shows the

steady-state, periodic schedule of the graph for multiple

computations or data packets over a schedule cycle of

period TBO, which is assumed to repeat indefinitely. The
TGP is also constructed by assuming infinite resources

so that the parallelism inherent in the algorithm is

exposed. The TGP determines the maximum number of

processors sufficient to execute the algorithm periodi-

cally and, as mentioned in section 4, that number may be

greater than the calculated number of processors given

by equation (5). When processor requirements exceed

processor availability, the Design Tool provides a tech-

nique of inserting artificial data dependencies, called

"control edges," to alter the dataflow-derived schedule in

hopes of reducing the processor requirement. Insertion of

control edges is explained in more detail later in this sec-
tion and in section 10.1.

5.1. Single Graph Play Window

The single graph play window for the DFG of fig-

ure 1 is shown in figure 17. The task (node) names are

shown vertically, and time is represented along the hori-

zontal axis. Node latencies are represented by the length
of the red (shaded) bars. Slack time, defined as the maxi-

mum time a task can be delayed without degrading the

TBIOlb performance or violating inter-iteration prece-

dence relationships, is represented by unshaded bars

(fig. 17(a)). Intra-iteration control edges can be inserted

by utilizing the SGP window. It is often useful to observe
the location of slack time displayed by the SGP and

insert control edges to take advantage of the slack time

while rescheduling nodes.

Time measurements can be taken with the left and

right cursors displayed as vertical lines (fig. 17(b)). The

left and right cursors are controlled with the left and right

mouse buttons, respectively. The left cursor can also be

controlled with the left and right arrows keys alone, and

the right cursor in the same way while holding down the

<Shift> key. There are also commands to enable the user
to zoom into time intervals between the left and right

cursors. Information can be obtained on any node by

pointing to a node and clicking the left mouse button

while holding the <Shift> key down, as shown in fig-
ure 18(a). Figure 18(b) shows information that can also
be obtained on the event associated with the current left

cursor position by pressing <Shift + Enter>. Moving the

cursors with the keyboard automatically updates the
information window.

5.1.1. Display Menu

The Display menu includes commands that enable

the user to zoom into and view internal transitions, slack

13
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Figure 17. Single graph play window. Shaded bars indicate task execution duration; unshaded bars indicate slack time.
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Name; E

Priority: 0
Max Instances: 1

Latency: 9D
Read: 10

Process: 70

Write: 10

Earliest Start:. 280

Latest Finish: 404
,qlack: 34

Inputs: D-> I Name: E

Outputs: -> F II Event: Read

-> D _ Time: ZS0

(a) Click on a node bar while holding down <Shift> key. (b) Move left time cursor with left and right arrow keys.

Figure 18. Two ways to display information about a node.

time, paths, circuits, and legends. A description of each

command is given as follows.

Show Transitions--Turns on and off the display

of internal transitions: read, process, and write

(setup) time as shown in figure 19.

.r show Segments--Turns on and off the display of

TBO-width segments (separated by dotted lines)
that indicate the multiple computations for

successive data packets shown by the TGP win-
dow. In fact, the TGP window can be constructed

by superimposing the TBO-width segments.

Show Slack--Turns on and off the display of slack

time by using unshaded bars.

Paths...--Shows none of the paths, all of the paths,

or just the critical paths within the graph by denot-

ing member nodes with gray bars (fig. 20(a)).

_" Circuits...--Shows none of the circuits, all of the

circuits, or just the critical circuits within the graph

by denoting member nodes with gray bars

(fig. 20(b)).

,,t Select Node---Allows the user to highlight selected

nodes (bars) in gray by clicking on a bar or using

the up and down arrow keys to obtain information
on the selected node. Given a selected (gray-

shaded) node, all nodes independent of it will be

highlighted in yellow. Pressing the <Enter> key
while holding down the <Shift> key will display

the information box for the node, as shown in

figure 18.

Legend--Displays the legend for the given display
mode.

_Add Edge---Allows the user to insert an intra-

iteration control edge between two nodes, for

example, N i _ N r Selecting this command will
display at the bottom of the window the following

prompt for the terminal side of the edge:

Initial Node --> Terminal Node?

The terminal node (N t, node receiving data from

edge) is prompted for first, since the intent is to

delay a particular node behind another. Point and
click the left mouse button on the terminal node.

The display will be updated and show all nodes

independent of the terminal node highlighted in

yellow--these highlighted nodes are the only

options for the terminal node to create an intra-

iteration control edge. At this point the text display

will prompt the user for the initial node (Ni):

Initial Node? --> N t

Upon clicking the left mouse button on the initial

node N i, all displays will be automatically updated

and show the new performance based on this newly

inserted edge. This procedure can be canceled

before selecting the initial node by pressing the

<Esc> key. After the edge has been inserted, it can

15
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Read
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Float

Figure 19. Single graph play window showing internal transitions associated with reading, processing, and writing data.

be removed by the Delete Edge command or by the
Undo command.

IO- Delete Edge----Allows the user to delete a previ-

ously inserted control edge by prompting for the

terminal and initial nodes as done in adding a con-

trol edge. Control edges already present within the

graph file cannot be deleted. A beep indicates
Success.

_" Undo---Deletes the most recently inserted control
edge. Repeating the Undo command will continue

to remove the most recently inserted control edges

until none remain. A beep indicates success.

_" Slice--Zooms into the time interval defined by the

left and right time cursors (vertical lines).

IrPrevious Slice---Zooms into the time interval

defined by the left and right time cursors (vertical
lines). After zooming into a time slice, the user can

move left or right of the time interval by using the
horizontal scroll bar.

Whole---Displays the entire SGP schedule over the

schedule length.

_" Redraw--Refreshes the display without changing
the current zoom or time cursor positions.

_" ResetmRefreshes the display by returning to the
entire picture (removes zoom) and positions the left

16

and right time cursors to the left and right margins,
respectively.

5.1.2. Select Menu

The Select menu includes commands that enable the

user to display only selected nodes, force the cursors to

jump to selected nodes and/or events, or set the time step
for the horizontal scroll bar.

ar Display...mlnvokes the dialogue box shown in fig-

ure 21, allowing the user to choose which nodes to

include and the vertical ordering within the display.
Double click the node name shown in the list to

toggle between Ix] show and [_] don't show. Click

once on a node and press the Top, Up, Down, or

Bottom buttons to move its position relative to
other nodes.

Jump by..._Invokes the dialogue box shown in

figure 22, allowing the user to choose which node

or event to have the cursors jump by. Check the
box for the desired node and/or event condition and

select the node and/or event of interest.

_" Scroll Step--Invokes the dialogue box shown in

figure 23, allowing the user to select the jump

interval for the horizontal scroll bar. The range is 0
to 32767.



Single G_aph Play

Display __¢lect

I)FG Critical Path
F i

I
E I
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_B .......................
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l ...........................
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(a) Display:Paths menu.

Critical Path

Single Graph Play g[

Display Select

DFG Critical Circuit
F

E

D

C

B

A

TIME 0 (570)
I
-, , , -, m m,n , 1T_ f ......

Critical Circuit

(b) Display:Circuits menu.

Figure 20. Select Display:Paths... menu command to display all paths or just critical paths, or Display:Circuits... menu command to dis-

play same for circuits. Paths and circuits are denoted with gray-shaded bars.
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Figure 21. Choose Display... command from Select menu to cus-

tomize display of nodes within Graph Play windows.

[] NODE

IB m

[] EVENT

Re ad lJ

I

Figure 22. Choose Jump by... command from Select menu to
choose nodes or events to jump to when moving time cursors
with arrow keys.

5,2. Total Graph Play Window

This section discusses the TGP window, offers some
comments and observations, and defines the menu
commands.

The Total Graph Play window for the DFG of

figure 1 is shown in figure 24 for a TBO of 314 time

units. Just as in the SGP, task (node) names are shown

vertically and time is represented along the horizontal

axis. Node latencies are represented by the length of the

red (shaded) bars. Comparing figure 24 with the TBO-

- Scroll Step

1'°° I

Figure 23. Choose Scroll Step command from Select menu to set
amount to increment when using horizontal scroll bar with a
zoomed interval.

width segments in figure 17, one can observe that the

construction of the TGP from the ES module TBO map-

ping function is equivalent to superimposing the TBO-
width segments onto the SGP. The numbers above the

node bars indicate the relative data packet (data set) num-

bers of the scheduled task. That is, data packet n + 1

denotes a data packet injected into the graph one TBO
interval after data packet n. The overlapped execution of

multiple node instantiations is represented by multiple

rows for the same node, as is the case for node B requir-
ing two instantiations.

Referring to the scheduled effort of nodes D and E,

which form a recurrence loop (circuit), one can observe

some idle time from the completion time of E to the ear-

liest start of D, which shows up as slack in figure 25.

Since this slack time is a result of inter-iteration depen-
dencies, it is also a function of TBO; this can be demon-

strated by reducing the TBO of the DFG by changing the
number of processors to four. Doing this causes the

Design Tool to apply an R of 4 in equation (3), and to

find that TBO is limited by the recurrence loop D _( E,

having a time per token ratio of 280 time units, as shown

in figure 26. At TBO = TBO/b = 280 time units, there is

no longer idle (slack) time in the recurrence loop, since

node D begins as soon as node E completes.

Before we discuss menu commands, one difference
between the SGP and TGP windows involves insertion of

control edges. As mentioned in the previous section, one

can impose only intra-iteration control edges with the

SGP window. However, with the TGP window, both

intra- and inter-iteration control edges may be imposed.
Intra- and inter-iteration edges (data or control) can be

distinguished from one another by the fact that intra-

iteration edges have no initial tokens whereas inter-

iteration edges do. Whether an imposed control edge has
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Data Packets

Figure 24.
numbers.
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Total Graph Play window for DFG of figure l at TBO = 314 time units. Numbers over bars indicate relative data packet

Single Graph Play D_

Display Nele_

DFG
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D

I
C

I I
TIME 100 (70)

Figure 25. Single Graph Play window view can be customized with Slice and Display... menu commands. Left and right time cursors (ver-
tical lines) are shown measuring processing time of task C, which begins at time 100 time units and has a duration of 70 time units.
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Figure 26. Lower bound on TBO (TBOlb) is limited inherently by recurrence loop of algorithm, composed of nodes D and E.

one or more initial tokens is schedule dependent. The

Design Tool automatically calculates the proper number

of initial tokens (if any) needed on a control edge (at the

time of insertion) to model the proper synchronization
between the nodes. Once a control edge is inserted with a

determined number of initial tokens, the initial token

count will not change as the schedule is altered by adding

more control edges or changing TBO. Thus, the favored

schedule resulting from the initialized control edges at

one TBO period may not be favorable at a different TBO

period.

Most of the features offered by the SGP window are

also offered by the Total Graph Play window. Rather

than redefining the shared functionality, only the added

or missing features are discussed in this section. Refer to
section 5.1.1. for detailed descriptions of the common
menu commands.

5.2.1. Display Menu

The commands offered by the Display menu are

equivalent to that of the SGP window except for the fol-

lowing omissions:

There is no Show Segments command, since the

TGP displays the superimposed TBO-width seg-

ments shown by the SGP window.

There is no Show Slack command, since the dis-

play would become messy because of the over-

lapped task schedules shown within the TGP.

The TGP window includes a command not offered by the

SGP window, which is

_'Show Packets--Shows the relative data packet

(data set) numbers above the associated node exe-
cution bars.
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Figure 27. Single Resource Envelope window displays processor utilization associated with Single Graph Play window.

5.2.2. Select Menu

The Select menu includes commands that enable the

user to display only selected nodes, force the cursors to

jump to selected nodes and/or events, or set the time step
for the horizontal scroll. Since the commands are func-

tionally equivalent to the Select menu commands pro-
vided by the SGP window, see section 5.1.2. for a

description of each command.

6. Measuring Concurrency and Processor

Utilization

The Concurrency windows plot processor require-
ments and utilization over time for the DFG schedules.

The plots are referred to as resource envelopes, and the
area under the curve is equal to the computing effort

required of the processors. The single resource envelope
(SRE) shows the steady-state processor requirements of

the DFG for the execution of a single computation or

data packet. The SRE for the dataflow schedule of fig-

ure 17 is shown in figure 27. For the Shared Memory/No
Contention and the Network with Com Controller mod-

els, the SRE is equivalent to counting the number of

overlapped execution bars within the SGP over the

schedule length time interval. The SRE determines the

minimum number of processors sufficient to execute the

algorithm for a desired schedule length and TBIO. For
the Network without Corn Controller model, the SRE

includes the effort required for communication as mod-

eled by the edge delays. The total resource envelope

(TRE) shows the steady-state, periodic processor

requirements for multiple computations of data packets

over a schedule cycle of period TBO, which is assumed

to repeat indefinitely. The TRE for the dataflow schedule
of figure 24 is shown in figure 28. The TRE determines

the maximum number of processors sufficient to execute

the algorithm periodically with period TBO. Like the

SRE, the TRE is equivalent to counting the number of

overlapped execution bars in the TGP when not using the
Network without Corn Controller model. Processor utili-

zation measurements can be taken from the TRE

window.

6.1. Display Menu

The Display menu includes the commands:

_" Slice

_" Previous Slice

_" Whole

_" Redraw

_- Reset

that enable the user to zoom in, zoom out, or refresh the

picture. These are functionally equivalent to the same
commands provided in the graph play windows, so an

explanation of each will not be given here. Refer instead
to section5.1.1 for detailed explanations of each
command.
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Figure28.Total Resource Envelope window displays processor utilization associated with Total Graph Play window.

4 Processors... 28.7 _;

3 Processors... 7'0.7

2 Processors... 100.0 _;

1 Processors... 100.0

0 Processors... 0.0 P_

Computing Effort -- 940

Total Utilization = 74.8

Figure 29. Select Utilization command from Display menu in

Total Resource Envelope window to measure utilization of pro-
cessors. Utilization depicted is associated with one TBO interval
of 314 time units as shown in figure 28.

The Total Resource Envelope window provides an
additional command that enables the user to measure

processor utilization within a scheduling period:

t-Utilizationmlnvokes the window shown in fig-

ure 29, which displays processor utilization mea-
surements. The measurements are based on the

time interval defined by the current left and right

time cursor positions.
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6.2. Select Menu

The Select menu includes the commands

It Jump by...

_" Scroll Step

that enable the user to force the cursors to jump to

selected nodes and/or events and set the time step for the

horizontal scroll just as in the graph play windows. Refer

to section 5.1.2 for detailed explanation of each
command.

6.3. Utilization Window Overview

The Utilization window displays the utilization of

the processors and the computing effort (area under the

envelope) for the interval defined by the left and right
time cursors. Note that the computing effort shown in

figure 29 for an entire TBO interval is equal to the TCE

measurement (sum of all node latencies) given by the
Metrics window in figure 11. The Utilization window is

automatically updated based on current cursor positions
each time the Utilization command is selected from the

Display menu in the TRE window. An example is shown

in figure 30. Not only is the total processor utilization

measured, but the incremental processor utilization as

well, that is, the utilization of l processor, 2 processors,
3 processors, etc.



(a)Timeintervalstartingat90timeunits(withinagivenTBOperiod)ofwidth166timeunitsisdefined.

Utilization

4 Processors,.. 54.2 %

3 Processors... ] 00.0 _;
2 Processors... IOILO _;
1 Processors... 100.0 %
0 Processors.., fl.O

Computing Effort = 588

Total Utilization = 88.6 %

(b) Utilization within time interval is measured to be 88.6 percent. Area under curve within interval is 588 time units.

Figure 30. TRE window time cursors define time interval for utilization measurements.

6.4. Portraying Processor Utilization of Multiple

Graphs

This section describes the Concurrency window,

provided to analyze multiple graph execution under the

multiple graph execution strategies. As discussed in

section 3.2.2, the Design Tool provides two models for

multiple graph analysis: Parallel Execution and Time

Multiplex Execution. In the Parallel model, the phasing

between the graphs is nondeterministic, whereas in the

Time Multiplex model, the phasing between the graphs is

known a priori. Figure 31 portrays the differences

between the two models and the effect on the total pro-

cessor requirements. Since the Parallel Execution model

assumes that the phasing of the graphs (and hence the

overlap of the individual TRE's) cannot be controlled,
the system must provide for the worst-case processor

requirements, that is, summation of the processor

requirements of the individual graphs. In the Time Multi-

plex model, the overall processor requirement is a func-

tion of the overlap between graphs (determined by the

user). Thus, the determinism provided by the Time Mul-

tiplex model can result in fewer processors.

There are two window displays for the multiple

graph models, one for each model. The window displays
and user-interface to each are discussed in this section.
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Parallel

Graph 1 Graph 2 Graph 3

Rtotal = R1 +R2+R 3

Time Multiplex

Rtota I = max(R1, R12, R 2, R23, R 3, R31)

Figure 31. Parallel Execution model assumes no cona'ol over graph phasing, which requires worst-case processor design. In Time Multiplex
Execution model, phasing between graphs is fixed to particular values by user. This deterministic phasing, and hence overlap, between
graph reduces processor requirements based on amount of graph overlap.

6.4.1. Parallel Execution Model Window

6.4.1.1. Overview. The Parallel Execution window

displays the processor requirements and utilization per-

formance for all graphs analyzed by the Parallel Execu-

tion model. An example for three graphs is shown in

figure 32. This window is invoked by selecting the show
Parallel Execution command from the window menu in

the main window (section 3.2.3). The Total Computing
Effort shown in the window will be the summation of the

TCE values for all graphs. For each individual graph, the

processor requirements are equal to the peak of the corre-
sponding TRE curve, and processor utilization is calcu-

lated as before from equation (7). The total processor

requirement is the sum of the individual processor

requirements, calculated to be 16 in this example. The

total processor utilization (Uparallel model) of the system is
calculated by summing the individual graph speedup val-

ues (eq. (6)) and dividing by the total number of proces-

sors, as shown in equation (9):

_,_ Si

V i graphs (9)
Uparallel model = Rtotal

where S i is the speedup of the ith graph and Rtota 1 is the

total processor requirement. Further discussion of the

Parallel Execution model and the calculation of total pro-

cessor utilization by using a collection of example graphs
is deferred until section 10.3.
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ParallelGraph Execulion I_E

Display

Total Computing Effort = 1950

Graph_l
Processors --4
Processor Utilization -- 100.0

Graph_2
Processors = 1
Processnr Utilization = 85.7 %

Graph_3
Processors = 5

Processor Utilization = 80.0 _;

Total Processors : 16
Total Processor Utilizatinn = 87.5

Figure 32. Parallel Graph Execution window displays processor
requirements and utilization under Parallel Execution model.

6.4.1.2. Display menu. The Display menu includes

commands that enable the user to change display options
and save results. The commands are defined below.

G'Shnw...--Allows the user to change viewing

options.

_" Save Results--Saves the utilization measurements

shown in the window to the notes file. The name of

the notes file can be defined with the Save Infn

command from the File menu in the main window.

(See section 3.2.1 .)

_" Redraw--Refreshes the display.

6. 4.2. Time Multiplex Model Window

The Time Multiplex window portrays the processor

requirements and utilization for the algorithm graphs

analyzed with the Time Multiplex model. A sample dis-

play is shown in figure 33(a) for three graphs. The win-

dow displays the overall resource envelope due to the

overlap of the resource envelopes of the individual

graphs. The display portrays the processor utilization,

which is dependent on the phase delays between graphs

for a single periodic scheduling cycle. The graph

sequence and phasing determines the amount of overlap

and thus the peak processor requirements for all time

multiplex graphs. The dotted lines in figure 33(a) indi-

cate the graph phase delays. The sequence order and

exact delays are portrayed in the Phasing window shown
in figure 33(b).

The Phasing window is used to define the phase

between the graphs. The phase between two graphs (G l
and G2) is determined by the amount of delay between

injecting input data into G l and G 2. A given graph may

be required to receive input data more than once in a sin-

gle scheduling cycle, and hence execute more often than

others within a given sequence. Such a graph is said to be

multiply instantiated or replicated. In effect, this is equiv-

alent to having multiple sampling rates within the multi-

ple graph system. The resulting TBO for a given graph is

the total amount of delay in a sequence cycle divided by

the number of instantiations for the graph. In the example
of figure 33, all graphs have the same TBO, which is

d I + d2 + d 3 = 600 time units. Since TBO is a function of

the phase delays and the total processor requirement

depends on the resulting overlaps of graphs, the TBO and
Processors button and menu commands are disabled.

These two parameters cannot be changed independently

by the user. Instead, these parameters reflect the resulting
time multiplex characteristics. As in measuring utiliza-

tion for individual graphs, the overall processor utiliza-

tion is displayed via the Utilization window shown in

figure 33(c). The computing effort (area under the curve)

is equal to the sum of all computing efforts for the indi-

vidual graphs.

6.4.2.1. Display menu. The Display menu includes

commands that enable the user to view processor utiliza-

tion, show input injection intervals, and zoom into a time

interval. For more information, select the Display menu
command name.

_" Utilizatinn--Displays the Utilization window of

figure 33(c), which shows the overall processor uti-
lization. See section 6.3 for further discussion of

the Utilization window.

Show Segments---Displays dotted lines indicating

the graph phase delays.

save Results--Saves the information shown in the

Utilization window in the notes file (section 3.1.2),

as shown in figure 34. In addition to naming the

notes file from the Design Tool main window, the

Utilization window must be opened (the Utilization

window does the actual calculation of processor
utilization when opened).

The following commands:

G- Slice

G- Previnus Slice

Whole
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_Display Select

Time Multiplex

0

I: d3:!Scheduling cycle

(a) Total Resource Envelope shows processor requirement of three parallel executing graphs.

Graph sequence

UtilizationGraph 1

_ _ i_: _

Graph_2

Graph_3

250

d 3

d 1

d2

4 Processors... 41.7 P_

3 Processors,.. 83.3 9_

2 Processors... 100.0 _;

1 Processors.., 100.0

0 Processors,,. 0.0 9_

Computing Effort = 1950

Total Utilization = 81 .Z

(b) Phase between graphs is controlled with Phasing window. (c) Overall processor utilization is displayed via Utilization window.

Figure 33. Time Multiplex window portrays processor requirements and utilization for algorithm graphs analyzed with Time Multiplex
model.
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Figure 34. Select save Results command from Display menu of Time Multiplex window to save contents of Utilization window. Utilization

window must be opened to save results.

_" Redraw

Reset

are identical to the commands provided by the graph play
windows. See section 5.1.1 for definitions.

6.4.2.2. Select menu. The Select menu includes
commands that enable the user to force the cursors to

jump to selected events and to set the time step for the
horizontal scroll bar.

_" Edit Graph Sequence---Invokes the dialogue box

shown in figure 35 that allows the user to change

the sequential ordering of graphs. Graphs can be

replicated for multiple sampling rates by clicking

on a graph name and pressing the Replicate button.

The edited sequence and graph replications will be

depicted in the Phasing window upon selecting the
OK button.

_'Reset Graph Delays--Resets the phase delays

between graphs such that graphs are separated by

the respective scheduling length times of the indi-

vidual graphs.

*_ Reset Graph Sequence---Resets the graph

sequence such that each graph appears only once in

the sequence cycle. The resulting sequence will

reflect the order in which the graphs were saved in

the graph file created by the ATAMM graph-entry

tool. The order of the sequence is depicted in the
Phasing window.

The remaining Select menu commands

_" Jump by...

_" Scroll Step

are identical to the commands provided by the graph play
windows. See section 5.1.2. for definitions.

27



Graph_l
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IIGraph3

_h 1 => 50

Graph_2 => 200

Graph_3 => 250
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i .... _i,_
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Figure 35. Select Edit Graph Sequence from Select menu to define order in which graphs should execute within scheduling cycle. Repli-

cating graph n times allows multiple sampling rates within graph system. That is, a given graph will execute n times more often within

scheduling cycle than other graphs.

6.4.3. Phasin_ Window Overview

The Phasing window (fig. 33(b)) determines the

sequential ordering and delays of the graphs for the Time

Multiplex model. The ordering of the graph sequence is

represented by a top-down list of graph names. The

graph at the top is the first graph in the sequence; the

graph at the bottom is last. The Phasing window also dis-

plays the time delays between the graphs (phase delay).

The delay time is the delay from when the previous graph

in the sequence receives its input data to when the given

graph receives input data. This delay can be changed by
pressing the Delay button.

7. Measuring Graph-Theoretic Speedup

Performance

7.1. Overview

The Performance window displays the number of

processors versus speedup based on equation (6). The
display automatically increases or decreases the abscissa
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each time the number of processors is changed from the

Metrics window. Figure 36 shows the theoretical

speedup for the DFG of figure 1. The speedup curve indi-

cates that maximum speedup performance is attainable

with four processors; additional processors will not result

in any further speedup. This leveling-off of performance

is attributable to the recurrence loop (circuit) within the

DFG. Without this circuit, the graph-theoretic speedup

would continue to increase linearly with the addition of

processors. However, this linear increase in speedup

would ultimately break off because of operating system
overhead, such as synchronization costs and inter-

processor communication.

7.2. Display Menu

The Display menu includes commands that enable

the user to select display options and save results.

_" Values---Turns on or off the display of the actual
speedup values above the blocks.
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Performance window displays theoretical speedup performance of DFG. Shown is speedup limit associated with DFG of

_" Lines_Turns on or off major grid lines on the dia-

gram for ordinate (speedup) values.

,_'save Results_Saves the speedup performance
information to the notes file. The name of the notes

file can be defined by using the Save Info com-

mand from the File display in the main window

(see section 3.1.2). Selecting this command will

update the speedup performance data in the file as

shown in figure 37.

•_ Redraw_Refreshes the display window.

8. Summarizing Dataflow Graph Attributes

8.1. Overview

The Graph Summary window shown in figure 38

displays the DFG attributes and scheduling criteria for

the current design or operating point (processors, TBO,

and TBIO). The characteristics include

NAME node names

LATENCY node latencies

ES earliest start times

LF latest finish times

SLACK slack times

INST maximum node instantiations

OE output empty--number of initially empty

queue slots (memory buffers)

OF output full--number of initially full queue
slots (memory buffers) due to initial
tokens. Initial tokens are a result of either

initial conditions (data values) represented

by data edges or initial tokens on control

edges required to impose inter-iteration

dependencies.

QUEUE output queue size = OE + OF

Control edges are distinguished from data edges by using

blue text in the window display and an asterisk in the
notes file. The display is updated automatically as the

modeling parameters or characteristics change during the

design session.

8.2. Display Menu

The Display menu includes commands that enable

the user to select display options and save results.

_" Show..._Invokes the dialogue box shown in fig-

ure 39 to allow the user to change the viewing

options. Simply check or uncheck the boxes to

show or hide the graph attributes, respectively.

_" save Results--Saves the graph information to the
notes file. The name of the notes file can be defined

with the Save Info command from the File menu in

the main window (see section 3.1.2). Selecting this
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File Edit Search Help

DESIGH TOOL NOTES FILE

lime and DaLe ......

Graph File .........

Total Graphs ....... 1
Total Nodes ........ 6
Total Sources ...... 1
Total Sinks ........ 1

Wed Jul 13 13:37:43 1994

O:\W]H16_ATANH_DEHQ\dFg.gLF

DFG SPEEDUP PERFORHRHCE

Processors Speedup
1 1.0
2 2.0
3 3.§

3.k
5 3._

6 3.4
7 3._

|

_N

;_

Figure 37. Select save Results command from Display menu in Performance window to update notes file with speedup data.

DFG Summaly _

Display

NAME LATENCY ES LF SLACK INST OEIOF QUEUE

A 90 fl 90 0 1 1 10->D 1->D
1 1 0 -> C 1 -> C

1 IO->B 1 ->B

B 390 90 480 0 2 2 / 0 -> F 2 -> F

C 90 90 480 300 1 2 1 0 -> F 2 -> F

D 190 90 314 34 1 1 I 0 -> E 1 -> E

E 90 280 404 34 1 1 I 0-> F I -> F
O 1 1 -> D 1 -> D

F 90 480 570 0 1 1 I 0 -> Snk 1 -) Snk

S_c 1 I 0-> A 1 -> A

Figure 38. Graph Summary window displays DFG amibutes associated with current dataflow schedule.
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Dis )lay...
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[] Laten t_/

[] Output Ernp_/Full

[] Output Queue

[] Earliest Start

[] Latest Finish

[] Slack Time

Figure 39. Select Show... command from Display menu in Graph

Summary window to select amount of information to display.

command will update the speedup performance

data in the file as shown in figure 40.

_" Redraw--Refreshes the display window.

9. Operating Points

9.1. Overview

The term "operating point" is used to define a partic-

ular multiprocessing design that results in a level of per-

formance and processor requirement, for example, TBO,

TBIO, and R (processors). The user may select multipro-

cessing schedules that have operating points within a

plane TBO x TBIO that has a graph-theoretic lower

bound (bottom left of the plane) defined by TBO/b and

TBIOlb. The Operating Point window displays the plot of

TBO versus TBIO, with the number of required proces-

sors as a parameter. An example of an Operating Point

window displaying four operating points associated with

one to four processors is shown in figure 41. The dashed

File I_dit fiearch Help

Total Computing Effort = 940
Processing = 820
Read/Write = 120

Ouerhead = 12.8

Schedule Length = 570
TBO = 314
Processors = 4

SIHK TBIO
->Snk 570

DFG GRflPH SUHHflRY

HI_IHE LATEHCV ES LF SLflCK IHSI

A 90 O gg 0 1

O 390 90 _80 0 2
C 90 90 _80 300 1
D 190 90 31_ 34 1
E 90 280 _04 34 1

F 90 48g 510 0 1

ii_iiiiiiii

OE/OF QUEUE

1/0 1 -->
1/0 1 -->
1/0 1 -->
2/0 2 -->
2/0 2 -->
1/0 1 -->
1/0 1 -->
0/1 1 -->
1/0 1 -->

c iii 

rF
E
rD

Src - - - 1/0 1 --> Q

Figure 40. Select save Results command from Display menu in Graph Summary window to update notes file with DFG attributes for cur-

rent scheduling solution.
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; TBO = 334

: 3]/"l

TBIO_b
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Figure 41. Operating Point window plots TBO versus TBIO. Number above each point represents number of processors required to achieve
that level of performance. Subscript alb denotes absolute lower bound.

lines indicate the absolute lower bound of the perfor-

mance plane. The displayed plot is associated with only
one graph and index at a time. The term "index" is used

to distinguish different options for the same number of

processors. The Design Tool can utilize multiple graph

and index options when using graph files generated by
the ATAMM Graph-Entry Tool. The user can select the

graph and option (index) to view by using the Show...

command from the Display menu. If the graph has multi-

ple sinks, the TBIO metric is equal to the maximum

TBIO for all paths within the graph.

The current undefined (user has not updated the

graph file for an operating point) design point is colored

red, operating points already defined (updated graph file)

are colored green, and a coincident undefined and

defined point is colored magenta. When the user is

searching the TBO/TBIO/R information box for a partic-

ular operating point (see next Point command), the

selected point is colored blue. The Display menu
commands

Show...

get Point

Redraw

_" update Graph

are defined next.

9.2. Display Menu

The Display menu includes commands that enable

the user to select the graph and the index to view, get
information (TBO, TBIO, and R) for an operating point,

refresh the display, and update the graph file with the

necessary modifications and characteristics to model (or

achieve) the desired operating point:

t-Show...DInvokes the dialogue box shown in fig-
ure 42, which allows the user to choose the desired

graph and index for viewing.

_" get PointDDisplays the TBO, TBIO, and proces-

sor requirement for the operating point colored in
blue. After the command is selected and before the

dialogue box is closed, the command name changes
to next Point.

t-next Point--This command is created in the menu

after the get Point command is selected. TBO,

TBIO, and processor requirement information for a

different operating point is displayed each time this
command is selected.

t- Redraw_Refreshes the display.
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-Index

Figure 42. Select Show... command from Display menu in Oper-
ating Point window to select graph and option (index) to view.

t-update Graph--Allows the user to update the

dataflow graph file for the current operating point.

A dialogue box will appear, reminding the user of

the total processor requirement for the operating

point and allowing the user to cancel the update. A

detailed discussion of updating the graph file is

given in the next section 10.1. Since the graph files

do not store performance information (only data-

flow graph topology and attributes), TBO, TBIO,

and R values are saved in a separate file (same file-

name as graph file but with the extension .rtt) cre-

ated by the Design Tool. When the graph file is

reopened, the information in this file is read so that

the Operating Point window can be redrawn to

show operating points defined in previous sessions.

10. Case Studies

For the purposes of presenting and demonstrating the

remaining Design Tool features, a few case examples
will be discussed. First, optimization of the DFG exam-

ple in figure 1 will be demonstrated by inserting control

edges. Second, the effect of communication delays, mod-
eled as edge delays, on the performance and displays pre-

viously presented will be demonstrated. And third, the

capability of the Design Tool in modeling multiple graph
execution scenarios will be demonstrated.

10.l. Optimization of Dataflow-Derived Schedule

The DFG example in figure 1 has the potential of

having a speedup performance of 3 with three processors
as indicated by equations (5) and (6) and portrayed in

figure 36. However, the precedence relationships given

by the dataflow may not lend themselves to this theoreti-

cal solution in terms of requiring three processors at a
TBO of 314 time units. The dataflow analysis provided

by the tool only guarantees the scheduling solution with

sufficient resources (processors). When resource require-

ments extend beyond resource availability, trade-offs

may be necessary between R, TBO, and TBIO, in addi-

tion to optimization of the dataflow schedule with artifi-
cial precedence constraints.

The inclusion of additional precedence constraints in

the form of control edges may reduce the processor

requirements of a DFG for a desired level of perfor-

mance. Since the problem of finding this optimum solu-

tion is NP-complete and requires an exhaustive search,

the Design Tool was developed to help the user find

appropriate control edges when needed and to make

trade-offs when the optimum solution cannot be found or
does not exist (ref. 9). The solution for a particular TBO,

TBIO, and R is ultimately application dependent. That is,

one application may dictate that suboptimal graph

latency (TBIO > TBIO/b) may be traded for maximum

throughput (1FI'BO/b) while another application may dic-

tate just the opposite. An application may also specify a

control or signal-processing sampling period (TBO) and

the time lag between graph input g(t) and graph output

g(t- TBIO) that is greater than the lower bounds deter-
mined from graph analysis, possibly making it easier to

find a scheduling solution. The use of the Design Tool

for solving the optimum three-processor solution is pre-
sented in this section.

With reference to figure43, node C has intra-

iteration slack time that may be utilized (by delaying

node C) without degradation in TBIO performance.

Selecting the Add Edge command from the Display
menu in the SGP window and clicking on the execution

bar of node C immediately highlights the nodes indepen-

dent of node C. These highlighted nodes are the only

options for an intra-iteration control edge. By using the

time cursors, one can easily determined that node C can

be delayed behind node E without extending beyond its

slack time. Clicking on node E results in the inclusion of

the E -( C constraint, thereby eliminating the needless

parallelism for a single iteration, as shown in figure 44.

Even though the computing effort is smaller than before

adding the E -,( C constraint, there is still some comput-

ing effort requiring four processors. Additional prece-
dence constraints may exist that could effectively

reallocate the computing effort requiring four processors

to fill in the underutilized idle time requiring only two

processors.

By using the time cursors, the user can locate the

four-processor effort in the TGP (note cursor position in
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Figure 43. Dataflow schedule for desired number of processors (three for example) and TBO (314 time units) may in fact require more pro-
cessors (four in this case). User may wish to eliminate needless parallelism and fill in underutilized processor time. Figure shows intent to
delay node C behind nodes B, D, or E.

the TGP and TRE of fig. 44). Referring to the TGP of

figure 44, one can determine that the likely candidate is
to delay node D behind either node C or node B. Select-

ing node C, which imposes the C -< D constraint, creates

an artificial recurrence loop with a timing violation; that

is, the time per token ratio of the loop C -< D _ E
exceeds the current TBO of 314 time units. When such a

situation arises, the Design Tool will warn the user by

displaying the dialogue box shown in figure 45. Attempt-

ing the other option and imposing the B _ D constraint

produces the results shown in figure46, a three-

processor scheduling solution having optimum through-

put. However, the solution is not optimum in terms of

TBIO performance. Imposing B _ D effectively delayed
node D 76 time units. Before the B _( D constraint was

imposed, node D had 20 time units of slack. As a result

of B _ D, node D is now pushed 56 time units beyond
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its slack time, increasing TBIO above the TBIOIb of 570

time units to 626 time units, as shown by the Metrics
window of figure 46.

The Graph Summary window in figure 47 also dis-

plays the control edges added for the three-processor
schedule, indicated by asterisks. With reference to the

B -< D control edge, OF = 1 (representing the presence
of one initial token) characterizes the inter-iteration rela-

tionship required between B and D (TBO delay of 1) to

assure the desired schedule in figure 46. This inter-
iteration dependency is implied by the relative data

packet numbers assigned to the node execution bars in

figure 46. If data packet 2 represents the nth iteration of a

node, notice that node D is enabled for execution by the
(n - 1)th iteration of node B.
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Figure 44. Imposing intra-iteration control edge E -( C delays node C within its slack time so that TBIO is not increased. Rescheduling

node C eliminates needless parallelism so same TBIO can be obtained with two processors, rather than three.

A timing violation has been detected in circuit: C->D->E->

The last control edge inserted will be deleted!

I I III

Figure 45. The Design Tool prevents insertion of artificial precedence relationships not permissible as steady-state schedules.
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Figure 46. Imposing control edge B -_ D delays node D behind node B. Since nodes B and D belong to different iterations, control edge

imposes inter-iteration dependency requiring initial tokens (one, in this example). Design Tool automatically calculates appropriate num-
ber of initial tokens.

10.1.1. lniti_ization of Control Edges

The three-processor scheduling solution in the previ-
ous section required an inter-iteration control edge with
an initial token. Even though this initial token is deter-

mined automatically by the Design Tool, a brief explana-
tion of inter-iteration dependency is provided in this
section.

As discussed in section 2, many signal processing
and control algorithms require previous state information

(history) or delays within the algorithm. These delays
can be modeled by initial tokens on edges. With refer-
ence to figure 48, the node output z(n) associated with
the nth iteration is dependent on the current input x(n),
input y(n - d_) provided by the (n - dl)th iteration, and
input w(n - d2) produced by the (n - d2)th iteration. But,
the initial tokens necessary to obtain a desired algorithm
function affect the permissible schedule of tasks for a

desired iteration period. Implementation of this function

would require d I initial tokens on the y(n - d l) edge and
d 2 initial tokens on the w(n - d2) edge in order to create
the desired delays. In such cases, the critical path, and
thus TBIO, is also dependent on the iteration period TBO
(ref. 5).

For example, given that a node fires when all input
tokens are available, if sufficient resources are present,
the earliest time at which the node shown in figure 48
could fire would depend on the longest path latency lead-
ing to the x(n) or y(n - d_) edges. Assuming that the d 1
and d2 tokens are the only initial tokens within the graph,
the time for a token associated with the nth iteration to

reach the x(n) edge would equal the path latency leading
to the x(n) edge. Likewise, the minimum time at which

the "token" firing the nth iteration on the y(n - d_) edge
could arrive from the source equals the path latency
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)FG Summary _I

_Display

NAME LATENCY ES LF SLACK INST OEIOF QUEUE
A 90 0 90 O 1 ll0->D 1->D

210-> C 2-> C
1 I 0 -> B 1 -> B

O 390 90 480 0 2 1 I ! -> D 2-> D
210-)F 2->F

C 90 446 536 D 1

D 190 166 356 0 1

E 90 356 446 D 1

F

Src

1 / 0 -> F 1 -> F

1 /0-> E 1 -> F

II0->C I->C :_

I tO-> F 1 -> P
0/1 -> D 1 -> D

90 53G G26 0 1 1 t 0-> Snk 1 -) ShE

110->A 1 ->A

Figure 47. Dataflow graph attributes and timing are displayed in Graph Summary window. Edge added between nodes B and D requires ini-
tial token (OF = 1).

z(n) = x(n) * y(n - d I ) * w(n - d2)

w(n - d2)

d2

Figure 48. Algorithm function example.

= z(n)

leading to the y(n- di) edge. However, since this

"token" is associated with the (n- dl)th iteration (pro-

duced d I TBO intervals earlier), the actual path latency
referenced to the same iteration is reduced by the product

of d I and TBO.

From this example, it is easy to infer that the actual

path latency along any path with a collection of d initial

tokens is equal to the summation of the associated node

latencies less the product of d and TBO. Thus, the critical

path (and TBIO) is a function of TBO and is given as the

path from source to sink that maximizes equation (1),

where d is the total number of initial tokens along the

path.

Although initial tokens defined by the algorithm

functions tend to complicate the dataflow analysis, they
become useful when the user attempts to optimize the

dataflow schedule by introducing artificial data depen-

dencies. The options the user has for rescheduling a task

are bounded by the number of task end times in a Total

Graph Play diagram when the reschedule is a result of a

new precedence constraint. As mentioned in section 5,

the Total Graph Play is equivalent to the superposition of

TBO-width segments dividing up a Single Graph Play

diagram. Such an equivalent view of the steady-state
dataflow schedule will be used to generalize the potential

precedence relationships between nodes.

Figure 49 shows a generalized Single Graph Play

diagram divided into segments of TBO width. The num-

bers above the segments refer to the relative iteration

numbers or data packet numbers for each segment. The

figure shows that the bounded rescheduling options can

actually be divided into three regions. The three cases

assume that the user wishes to reschedule node Tn behind

the completion of one of the three nodes: T 1, T 2, or T 3.
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Controledgescreatedfromnodesinthisregionwouldrequire
initializationwithtokens, e.g., T 3 -_ Tn would require three tokens

Packet numbers

\
i+2 i+l i i-1 i 2 i-3

Time

Control edges created from nodes in this region

do not require initialization with tokens, e.g., T2-'< T n

/
Control edges created from nodes in this region would require

initialization with antitokens, e.g., TI-_ Tn

Figure 49. Inter-iteration control edges may be initialized with tokens, depending on iteration number separation.

If the user decided to impose the constraint T 2 -,( Tn,

the two nodes would belong to the same iteration i (intra-

iteration dependency). Thus, the control edge imposing
T2 _( Tn would not require an initial token.

If the user decided to impose the constraint T 3 -.( Tn,
the two nodes would not belong to the same iteration i,

but would instead be separated by three iterations. That

is, the ith iteration of node T n would be triggered by the

(i - 3)th iteration of node T 3. This implies that during the

transient state of execution, node T n would fire three

times on three consecutive data sets before node T 3 fired

even once. The only way this could happen is if the edge
T 3 -,( Tn had three initial tokens.

The last case may seem strange at first. If the user

imposed the constraint T 1 -< Tn, the two nodes would
again not belong to the same iteration i, but would

instead be separated by a single iteration. What is strange

about this is that the ith iteration of node Tn would be

triggered by the (i + 1)th iteration of node TI, a data set
injected into the graph in the future. This implies that

during the transient state of execution, node T n would

have to throw away the first token received from T 1 and
not fire until receiving the second (and subsequent)

tokens. This type of synchronization can be modeled

with "negative" token counts. These "negative" token

counts are referred to as antitokens. By permitting initial

token counts to be negative as well as positive, more

rescheduling options (corresponding to segments to the

left of the node to reschedule) are available to the user.

10.1.2. Updating Dataflow Graph

A multiprocessor solution of the dataflow graph in
figure 1 was designed in the previous section. The
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Figure 50. Operating Point plane for three-processor design.

dataflow graph characterizes not only the partial ordering
of tasks for correct results, but also the communication,

synchronization, and memory requirements at run time.
As discussed in section 9, the Design Tool allows the

user to update the dataflow graph file with the appropri-

ate attributes that characterize a multiprocessor solution.

This section presents the update procedures required for

the three-processor design example.

Once the design is finalized as shown in the previous

section, the user can review the performance plane (TBO

versus TBIO) by selecting the show Operating Points
command from the Window menu in the main window.

Having done this, the Operating Point window in fig-
ure 50 will be displayed showing the TBO = 314 time

units and TBIO = 626 time units performance of the

three-processor (R = 3) scheduling solution. Figure 50

shows that this design will result in optimum

throughput (1FFBO/b) but suboptimal graph latency

(TBIO > TBIO/b ).

The dataflow graph described by the file DFG.GTF

can be updated with the design attributes summarized in

figure 47 by selecting the update Graph command from

the Display menu in the Operating Point window. (See
also section 9.) Invoking the update Graph command

will prompt the user with the dialogue box shown in fig-
ure 51. In addition to reminding the user of the processor

requirements, the dialogue box allows the user to accept
or cancel the update to the graph. Refer to section 9 for

the meaning of the "Index = 1" statement in the update

Graph box. Selecting Yes will update the graph file

U _date Graph

New Operating Point!

Modify graph(s] for the Operating Point:
Total Processors = 3

Index = 1

Figure 51. Updating dataflow graph with design attributes.

DFG.GTF with the appropriate graph attributes. The

updated file can be viewed by selecting the View com-
mand from the File menu in the main window, as shown

in figure 52 (approximately a three-page view). The

updated attributes (referenced to the appendix) shown in

figure 52 can be compared with those of figure 47. Note

that the required instantiations of node B (left window)
has been set to 2, two control edges (middle window)

have been added, the control edge B -( D has been ini-

tialized with a single token, and data edges A -( C and

B -( F require two queue slots each.

The user may alter an updated graph as many times

as required, overwriting the current design. For example,

one may decide later that TBO may be sacrificed for an

improvement in TBIO for the same number of processors

(three in this case). Increasing TBO to 350 time units
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Figure 52. Select View command from File menu in main window to view graph file. Updated graph for three-processor design is shown.
Note added control edges in middle window.

happens to decrease TBIO to 590 time units in this exam-

ple, as shown in figure 53. The current "updated graph"
design point is still shown (in green), whereas the new

(possibly alternative) design point is shown (in red) with

the information "Point" box. Selecting the update

Graph command for a previously updated graph for the

same number of processors will result in the dialogue

box shown in figure 54, reminding the user that this
design point already exists.

10.2. Modeling Communication Delays

Up to now, the dataflow model has assumed a shared

memory architecture without processor contention. This

section will briefly discuss the effect of communication

delays on the two network models discussed in sec-

tion 3.2.2. The communication delays that are not negli-
gible between synchronized nodes can be modeled with

edge delays in the dataflow graph. To simplify the
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Figure 53. After dataflow graph has been updated, current design may be overwritten. Alternate design is shown with same number of pro-

cessors: TBO increases to 350 time units and TBIO decreases to 590 time units. Subscript alb denotes absolute lower bound.

U ]date Gra _h

Operating Point already exists!

Overwrite graph[s I modifications for the Operating Point:
lotal Processors = 3

Index = 1

Figure 54. Design Tool warns user when updating a dataflow graph for same number of processors will overwrite a previous design.

demonstration, the dataflow graph of figure 1 will be

used except that the edge delays shown in figure 55 are

added. The dataflow analysis via the Design Tool net-
work model with and without communication processors

will be demonstrated.

10.2.1. Network with Communication Controller

The Network with Com Controller model assumes

that each processing element is paired with a communi-

cations processor, controller, or state machine. In this

way, the burden of transferring information between pro-
cessors is removed from the processing elements. The

effect of edge delays on the dataflow analysis conducted

before can be seen by examining figure 56. With the

computed number of processors set to three, TBOlb

remains 314 time units. This is only because the total

communication delay of 20 time units added to the recur-

rence loop results in a time/token ratio of 300 time units,
still less than TCE/3 = 940/3 = 314 time units. Note, that

TCE remains 940 time units, since the communication

effort does not consume processor time. The significant

difference between this dataflow analysis and the previ-

ous one (Shared Memory/No Contention) is the finite

gaps between the dependent node execution bars and the

corresponding processor idle time.

It should be mentioned here that this model assumes

that the communications required of all edges can occur
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Figure55.Dataflowgraphwithcommunication delays modeled
by edge delays.

in parallel. Thus, the minimum time required to transfer

results of a node with multiple output edges is equal to

the maximum of all output edge delays. The processor
idle time that occurs during communications (which may

result in 0-percent processor utilization at times) is nec-

essary to assure data integrity. There is nothing for a pro-

cessor to do in this graph during this time, but maybe
there is something for it to do elsewhere, especially in the
multiple graph execution scenarios. Note that the over-

head is the same as the shared memory model.

The edge delays not only affect the calculation of
earliest start times but also the calculation of inherent

slack time. With reference to figure 57, it is apparent that
the intra-iteration slack of node C (which was 300 time

units before) has been reduced to 265 time units. Edge
delay also affects the inter-iteration slack. The slack

within the recurrence loop was 24 time units without the

edge delays, and the slack of node E in figure 57 is now
14 time units. This slack can be calculated as the differ-

ence between the iteration period, TBO = 314 time units,

and the total loop time including edge delay, 300 time

units. The difference is equal to the slack within the loop,
in this case 14 time units.

10.2.2. Network without Communication
Controller

The Network without Corn Controller model

assumes that each processing element is not paired with a

D[G

Set pisplay _¢lz_ ............................................................

DFG

E

D

I

TIME0 (605)

I_occssin 9 = 820

Reod_3elup : 120

Overhead = 12.B_

DFG

Figure 56. Dataflow analysis of DFG of figure 55 with communication delays and Network with Com Controller model.
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Name: E

Priority: 0
Max Instances: 1

Latency: 90
Read: 10
Process: 70
Write: 10

Earliest Start: 32D
Latest Finish: 424
Slack: 14

Inputs: D ->
Outputs: -> F

-> D

Display S_elect

DFG

F

E

C

B

Name: C

Priority: 0
Max Instances: 1

Latency: 90
Read: 10
Pmcess: 70
Write: 10

Earliest Start: 140
Latest Finish: 495
Slack: 265

TIME 495 (20)
_ i_i_;_ Inputs: A->

Figure 57. Effect of edge delays on node slack time. Intra-iteration slack of node C is reduced by C _ F edge delay of 20 time units. Inter-
iteration slack of node E is reduced by E <_D edge delay of 10 time units.

communications processor. In this case the processor is

responsible for the communications burden as well as the

computing effort required by the algorithm tasks. The

effect that edge delays under this model have on the data-

flow analysis conducted under the previous models can

be seen by examining figure 58. With the added commu-
nications effort, indicated by the increase in TCE to

1110 time units, TBOlb for a computed processor num-
ber of three is now 370 time units. One would expect the

earliest start times shown by the SGP to remain the same,
and the SRE would remain the same as well except for

the filling in of idle time due to the communication

requirements. Since the TBO has changed, however, the
TGP and TRE should be different. Referring to the TRE,

one can see that even though the idle time has been filled

in under this model, the processor requirement remains

four with slightly less utilization. This can be attributed
to the fact that computing power is the product of TBO

and the number of processors. Thus, computing power

can be increased to meet the added computing effort of a

problem by increasing TBO, processors, or both. In this
case, the increase in TBO has accommodated the added

effort incurred by the communication requirements,

keeping the processor requirement at four. The one major
difference in the two network models is seen in over-

head, in this case measured to be 26.1 percent due to the
added 170 time units of communication effort.

10.3. Multiple Graph Models

The Design Tool provides two models of parallel

graph execution. The first model, called the Parallel Exe-
cution model, is applicable when multiple, independent

algorithms are executing in the system simultaneously.

The model assumes that the phasing of one algorithm

graph with another is not known and cannot be con-
trolled. The second model, called the Time Multiplex

model, handles the cases where the graph phasing is

known a priori and can be controlled deterministically.

As you will see in this section, the processor require-
ments of the Parallel Execution model tend to be greater

than those of the Time Multiplex model. The three

graphs shown in figure 59 will be used to demonstrate
Design Tool features that apply both multiple graph

models. At present, the multiple graph model features of

the Design Tool can only be used with graph files gener-

ated by the ATAMM Graph-Entry Tool, since the Graph

Text File format only accommodates a single graph.

Figure 60 shows the capture of the three graphs by the

Graph-Entry Tool. The user chooses which multiple

graph model gets applied to which graphs by using the

dialogue box shown in figure 8.

10.3.1. Parallel Execution of Multiple Graphs

When multiple graphs are defined in a graph file

generated by the ATAMM graph-entry tool, the Design
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Figure 58. Dataflow analysis of DFG of figure 55 with communication delays and Network without Com Controller model.

Tool creates a Metrics window for each graph. The first

graph found in the file will be opened along with the
SGP window. All other Metrics windows will be mini-

mized to icons, as shown beside the Parallel Execution

window icon at the bottom of figure 61.

Figure 61 also indicates that Graph 1 requires a four-

processor schedule for an iteration period of 200 time
units. This is an optimum four-processor solution for
both TBIO and TBO, since there is no idle time in the

periodic schedule. At this level of throughput (1/TBO),

three data sets would execute simultaneously in the

graph. Figure 62 shows the Metrics window, SGP win-

dow, and TGP window of Graph 2; eight processors are

required at an iteration period of 108 time units. The

TGP shows that five data sets would be processed in the

graph simultaneously at this level of throughput. The

dataflow analysis of Graph 3, portrayed in figure 63,

indicates that four processors would suffice for an itera-
tion period of 134 time units. Since the dataflow sched-

ules of Graph 2 and Graph 3 have idle time, the solutions
are not optimal. Nonetheless, a search for a better solu-

tion will not be shown here, since the intent of this dis-

cussion is to demonstrate the multiple graph analysis
features.
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Given the individual scheduling solutions portrayed

in figures 61 to 63, the overall processor requirements

and utilization are displayed by the Parallel Graph Exe-

cution window in figure 64. The total computing effort is

computed as 1950 time units by summing the TCE val-

ues for all graphs. For each individual graph, the proces-

sor requirement is equal to the peak of the corresponding
TRE curve and processor utilization is calculated from

equation (7). To provide for the worst-case overlap of the

individual TRE's, the total processor requirement is the

sum of the individual processor requirements, calculated
to be 16 in this example. As defined in section 6.4, the

total processor utilization of the system is calculated

from equation (9), where the individual graph speedup

values are summed together and divided by the total
number of processors. In this example, utilization of all

processors is computed to be (800/200 + 750/108 + 400/

134)/16 = 87.1 percent.

10.3.2. Time Multiplex Execution of Multiple
Graphs

This section demonstrates the idea of deterministi-

cally controlling the phasing between graphs, which can

produce scheduling solutions with fewer processors. The
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Figure59.Threegraphexamplesusedindemonstratingmultiple
graphanalysisanddesign.

proceduresinvolvedin analyzinggraphswiththeTime
Multiplexmodelareslightlydifferentfromtheproce-
duresdiscusseduptothispoint.AswiththeParallelExe-
cutionmodel,aMetricwindowiscreatedforeachgraph.
But,asdiscussedin section6.4.2,theusercannotinde-
pendentlycontroltheTBOandprocessors(R)parame-
tersfor eachgraph.Theseparametersdependon the
periodicgraphsequenceandphasing,whicharepor-
trayedandcontrolledbytheTimeMultiplexandPhasing
windowsdescribedin section6.4.2.This sectionwill
demonstratetheperformancebehaviorof theindividual
graphsshownin figure59underatimemultiplexgraph
scenario.

Thetimemultiplex performance of the three graphs

periodically executed with the sequence {Graph 1,

Graph 2, Graph 3, Graph 1 .... } is shown in figure 65. By

comparing the delays shown in the Phasing window

(fig. 65(b)) with the TBIO values (fig. 65(a)), one can

infer that the graphs are spaced out by the respective
TBIO values (which are equal to the respective schedule

lengths) such that the processing of graphs does not over-

lap. Thus, the dashed lines in the resource envelope win-
dow actually indicate when the processing of one graph

ends and that of another begins. Also, since neither graph

is replicated (i.e., the system operates by a single sam-

pling rate in DSP terminology), the time between graph

executions (TBO) equals the sum of the phase delays,
1350 time units in this case. The disablement of the TBO

and Processors buttons is indicated by the grayed button

text in figure 65(a). The calculated processor require-
ment shown next to the Processors button is one for each

graph. This is expected, since in each case TCE is less

than TBO. However, the system requires two processors

to exploit the parallel concurrency in the individual

graphs with an overall processors utilization of

72.2 percent. In this example, the area under the resource

envelope, as indicated by the Computing Effort value
shown in the Utilization window, is the sum of the indi-

vidual graph TCE values.

Assume in the remaining discussions that this multi-

ple graph problem is to be mapped onto a three-processor

system and that one can arbitrarily define the sampling

rates of the system. The intent would be to fully utilize

(minimize idle time) the three processors in a way that

overall system speedup is maximized. One can see from

figure 65 that for an overall speedup of 1.44 (TCE/
TBO = 1950/1350), there is significant idle time in the

periodic dataflow schedule. By adjusting the relative
phase delays between the graphs, the user can fill in this

idle time by allowing just the right amount of graph

overlap.

For demonstration purposes, two different sampling

rates can be allowed in the system by replicating Graph 2

twice. That is, Graph 2 will receive, process, and produce

data twice as often as Graphs 1 and 3 within a cycle. To
do this, click on the Edit Graph Sequence command

from the Select menu in the Multiple Graph window to

invoke the dialogue box shown in figure 66. Clicking on

Graph 2, pressing the Replicate button, and then clicking
on the Down button will produce the sequence shown in

the dialogue list box. Figure 67 shows the resulting per-
formance of the new sequence {Graph 1, Graph 2,

Graph 3, Graph 2, Graph 1.... }. Notice that the graphs

have been separated by the respective TBIO values. As
before, the TBO values for Graph 1 and Graph 3 equal

the total amount of phase delay in this new sequence,
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Figure 60. Capture of multiple graphs with ATAMM graph-entry tool.
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Figure 61. When more than one graph is in graph file, each is given its own Metrics window and associated displays windows. Minimizing

Metrics windows (Graphs 2 and 3 in this figure) hides all opened window displays pertaining to the graphs. Dataflow analysis of Graph 1

shows four processors are required for an iteration period of 200 time units.
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Figure 63. Dataflow analysis of Graph 3 shows four processors are required for iteration period of 134 time units.
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Total Computing Effort = 1950

Graph_l
Processors = 4

Processor Utilization = 100.0

Graph_2
Processors = 8

Processor Utilization = 86.8 9_

Graph_3
Processors = 4

Processor Utilization = 74.6 %

Total Processors = 16

Total Processor Utilization = 87,1 P_

Figure 64. Parallel Graph Execution window summarizes proces-
sor requirements for all graphs intended to execute in parallel.
Since it is assumed that phasing between graphs cannot be con-
trolled in parallel graph strategy, total processor requirement is
worst case, or sum of individual processor requirements.

1800 time units. However, since Graph 2 produces out-

put twice in this period, it has twice the throughput as the
other graphs. Consequently, its TBO value is 900 time

units. Whether a replicated graph produces output with a

fixed period depends on the total phase delay that con-

verges on the graph in a given sequence. With reference

to the Phasing window of figure 67, notice that Graph 2

will receive input (and produce output) after 1050 time

units (Graph 1 to Graph 2), and then after 750 time units

(Graph 3 to Graph 2), and then after 1050 time units, and

so on. This means that within a cycle of 1800 time units,
Graph 2 actually has two TBO intervals. However, over

the 1800 time unit cycle, the average TBO interval for

Graph 2 is 900 time units, the value always displayed in
the Metrics window.

A three-processor, dual-sampling-rate solution that

fills in as much idle time as possible (any further overlap

of graphs will require four or more processors) is shown
in figure 68. The phase delays have been reduced such

that the overall scheduling cycle is now 1000 time units.

Unlike the two-processor example where Graph 2 pro-

duced output in an oscillating fashion due to the unbal-

anced phase delay, this solution has equal phase delay

(500 time units) along both paths converging onto

Graph 2. Hence, Graph 2 will always produce output

every 500 time units in this solution. Noting the results in
the Utilization window, the processor utilization has

increased to 90 percent with an overall speedup of 2.7

(2700/1000).

The dataflow analysis shown by this example pre-
dicts the performance and resource requirements of a

multiple graph execution scenario, assuming that the

graphs are phased as shown in figure 68. In the same way
that graph edges describe the communication and syn-

chronization required of partially ordered tasks, the

graph edges can also be used to describe a multiple graph

execution sequence. Just as edge delays can be used to

model communication delays between synchronized

tasks, edge delays can model the phase delays between

synchronized graphs. To do this, the Design Tool

imposes control edges (with edge delay) onto sources

normally unconditionally enabled. The control edges are

added to the sources along with the usual graph attributes

as a result of updating the graph, as discussed in sec-
tion 10.1.2. For the Parallel Execution model (which is

the model of choice for a single graph), sources are

updated with a self-loop control edge with a delay equal
to the desired TBO of the graph. This prevents the source

from being unconditionally enabled and instead injects

input periodically with period TBO when desired. For

the Time Multiplex model, the sources are updated with

a network of edges that describe the desired graph
sequence and phase. Figure 69(a) shows the resulting

ATAMM Graph-Entry Tool display after the graphs have

been updated. Not apparent in the picture, because the

edges overlap one another, are two edges forming a loop

between Graph 1 and Graph 2 and between Graph 2 and

Graph 3, as portrayed in figure 69(b). An initial token

marks the edge incident on Graph l to indicate that it

fires first. The firing of Graph l will encumber the token
and deposit output tokens for node A and the source G2.

However, the token destined for G2 will not appear for

250 time units, which imposes the desired phase delay
between Graph 1 and Graph 2. After 250 time units,

source G2 will encumber the token and deposit a token
for source G3 (and node N l ), which takes 350 time units

to arrive. The sequence of firings continues delaying
Graph 2 after G3 by 150 time units and Graph l after

Graph 2 by 250 time units, returning the token back to

the initial marking and allowing the sequence to repeat
indefinitely.

11. Future Enhancements

Extensions to the Design Tool planned in the near

future include incorporating heuristics to automate the
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Dashed lines in resource envelope denote phase delay between graphs.

Figure 65. Time multiplex strategy assumes phasing between graphs can be controlled by defining a finite delay between inputs to graphs.
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Graph_2 => 600

Graph_3 => 450
Graph_2 => 600

Figure 66. Select Edit Graph Sequence command from Select menu in Multiple Graph window to edit periodic graph sequence. User can
also replicate graphs so that they execute n-times as often as other graphs within scheduling cycle. Figure shows Graph 2 has been repli-
cated twice.

selection of control edges and static processor assign-

ments for optimal or near-optimal scheduling solutions.

Also planned are enhancements to the underlying model

and control edge heuristics to permit the design of real-
time multiprocessing applications for both hard and soft

deadlines (ref. 13).

For hard real-time modeling, the design would
assume worst-case task latencies. It has been observed

that under such assumptions, run-time dataflow behavior

may result in anomalous behavior such as requiring more

processors than indicated from the worst-case scenario

(ref. 14). This is a result of the nondeterministic overlap

of computing effort required of independent tasks (both

intra-iteration and inter-iteration dependencies). That is,
when tasks finish earlier than the worst-case execution

times (and they frequently will), predecessor tasks have

the potential of starting earlier, altering the resource

envelope predicted by the worst-case analysis, and con-

suming processing power away from other tasks, which

may result in missed deadlines. Static assignment of

tasks (nodes) to processors with fixed start times will

prevent this behavior, since the independent nodes will

be prevented from moving and altering the resource

envelope in a way that exceeds the worst-case processors
requirements. However, such anomalies can also be

avoided by inserting additional control edges that impose

stability criteria (ref. 14). Incorporating a stability crite-
ria algorithm similar to that of reference 14 would allow

the Design Tool to not only determine control edges for

increased performance, but also to guarantee hard
deadlines.

In the context of DSP systems, the Design Tool can

support only a single sampling rate per graph. Many DSP
algorithms require multiple sampling rates, which is

equivalent to graph nodes encumbering and depositing
multiple tokens per firing, as opposed to only one token.

Enhancements are planned to the graph analysis tech-

niques that will support multiple sampling rates within a
DSP algorithm.
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(b) New sequence and phasing between graphs, with Graph 2 repeated twice.

Figure 67. TBO for a given graph under time multiplex strategy depends on phase delays.
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to increase throughput and processor utilization in relation to figure 67.
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(b) Edge delays on source control edges impose sequence and phasing portrayed in figure 68.

In time multiplex mode, updating graph file not only sets graph attributes such as queue sizes but imposes control edges (with
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12. Concluding Remarks

The Dataflow Design Tool, a software tool that pro-

vides automatic graph analysis of algorithm decomposi-

tions, was presented. The graph analysis is based on the

dataflow paradigm, which is very good at exposing

inherent parallelism within algorithms. The functionality
of the Design Tool was defined and shown to facilitate

the selection of graph-theoretic multiprocessing solu-

tions. The addition of artificial data dependencies (con-

trol edges) was shown to be a viable technique for

improving scheduling performance by reducing the pro-
cessor requirements. The selection of an optimum solu-
tion is based on user-selected criteria: time between

outputs, time between input and output, and number of

processors (or trade-offs among these parameters when a

solution optimizing all three cannot be found or may not

exist). Case studies demonstrated the ability of the tool to

optimize a dataflow-derived scheduling solution by using

control edges, to model communication delays between

synchronized tasks, and accommodate multiple graph

modeling. The dataflow graph actually describes all the
pertinent run-time criteria such as task instantiations,

synchronization, communication, shared memory
requirements, and iteration period. The dataflow graph

used as input is updated by the Design Tool so that the

run-time scheduling solution is represented by the data-

flow graph. However, the dataflow model used and

updated by the Design Tool at compile time does not

imply that a dataflow graph implementation must be used

at run time. If the user has a dataflow machine (hardware

and/or software implementation), the dataflow graph can

be executed as is to achieve the solution predicted by the

tool. Alternatively, the user may wish to implement a

static scheduling solution with a heuristically chosen

schedule. In this case, the static scheduling algorithms

could be tailored to use the dataflow analysis (e.g., earli-
est start and slack times of nodes) as criteria to obtain a

static solution that also assures for data integrity that pre-
cedence constraints are not violated.

NASA Langley Research Center
Hampton, VA 23681-0001
September 21, 1995
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Appendix

Graph TextDescription

Graphtextfileof figure

GraphDFG
NodeA
Read10
Process 70

Write 10

Inst 1

End Node

Node B

Read 10

Process 370

Write 10

Inst 1

End Node

Node C

Read 10

Process 70

Write 10

Inst 1

End Node

Node D

Read 10

Process 170

Write 10

Inst 1

End Node

1

Node E

Read 10

Process 70

Write 10

Inst 1

End Node

Node F

Read 10

Process 70

Write 10

Inst I

End Node

Source Src

TBI 0

End Source

Sink Snk

End Sink

Edge Data
Initial Src

Terminal A

Tokens 0

Queue 1

End Edge

Edge Data
Initial A

Terminal B

Tokens 0

Queue 1

End Edge

Edge Data
Initial B

Terminal F

Tokens 0

Queue 1

End Edge

Edge Data
Initial F

Terminal Snk

Tokens 0

Queue 1

End Edge

Edge Data
Initial A

Terminal C

Tokens 0

Queue 1

End Edge

Edge Data
Initial C

Terminal F

Tokens 0

Queue 1

End Edge

Edge Data
Initial A

Terminal D

Tokens 0

Queue 1

End Edge

Edge Data
Initial D

Terminal E

Tokens 0

Queue 1

End Edge

Edge Data
Initial E

Terminal D

Tokens 1

Queue 1

End Edge

Edge Data
Initial E

Terminal F

Tokens 0

Queue 1

End Edge
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Graphtextfileoffigure1updatedfor three-processorschedule

Graph DFG Node F Edge Data Edge Data
Node A Read 10 Initial A Initial C
Read 10 Process 70 Terminal B Terminal F

Process 70 Write 10 Tokens 0 Tokens 0

Write 10 Inst 1 Queue 1 Queue 1

Inst I End Node End Edge End Edge
End Node

Source Src Edge Data Edge Data
Node B TBI 314 Initial B Initial A
Read 10 End Source Terminal F Terminal D

Process 370 Tokens 0 Tokens 0

Write 10 Sink Snk Queue 2 Queue 1

Inst 2 End Sink End Edge End Edge
End Node

Edge Data Edge Data Edge Data
Node C Initial Src Initial F Initial D

Read 10 Terminal A Terminal Snk Terminal E
Process 70 Tokens 0 Tokens 0 Tokens 0

Write 10 Queue 1 Queue 1 Queue 1

Inst 1 End Edge End Edge End Edge
End Node

EDGE Edge Data Edge Data
Node D CONTROL Initial A Initial E

Read 10 INITIAL E Terminal C Terminal D

Process 170 TERMINAL C Tokens 0 Tokens 1

Write 10 TOKENS 0 Queue 2 Queue 1

Inst 1 QUEUE 1 End Edge End Edge
End Node END EDGE

Node E EDGE

Read 10 CONTROL

Process 70 INITIAL B
Write 10 TERMINAL D

Inst 1 TOKENS 1

End Node QUEUE 2
END EDGE

Edge Data
Initial E
Terminal F

Tokens 0

Queue 1

End Edge
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Graphtextfileoffigure55withcommunicationdelaysmodeledbyedgedelays
GraphDFG NodeE EdgeData
NodeA Read 10 Initial B
Read 10 Process 70 Terminal F

Process 70 Write 10 Tokens 0

Write 10 Inst 1 Queue 1
Inst 1 End Node DELAY 25

End Node End Edge

Edge Data
Initial A
Terminal D

Tokens 0

Queue 1
DELAY 30

End Edge
Node F

Node B Read 10 Edge Data Edge Data
Read 10 Process 70 Initial F Initial D

Process 370 Write 10 Terminal Snk Terminal E

Write 10 Inst 1 Tokens 0 Tokens 0

Inst 1 End Node Queue 1 Queue 1

End Node End Edge DELAY 10

Source Src End Edge

Node C TBI 400 Edge Data
Read 10 End Source Initial A Edge Data
Process 70 Terminal C Initial E

Write 10 Tokens 0 Terminal D

Inst i Queue 1 Tokens 1

End Node DELAY 50 Queue 2

End Edge DELAY 10
End Edge

Sink Snk

End Sink

Edge Data
Initial Src

Terminal A

Tokens 0

Queue 1

End Edge

Edge Data
Initial A

Terminal B

Tokens 0

Queue 1
DELAY 10

End Edge

Edge Data
Initial C
Terminal F

Tokens 0

Queue 1
DELAY 20

End Edge

Node D
Read 10

Process 170

Write 10

Inst 1
End Node

Edge Data
Initial E

Terminal F
Tokens 0

Queue 1
DELAY 15

End Edge
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